TPC Journal V8, Issue 3- FULL ISSUE

264 The Professional Counselor | Volume 8, Issue 3 based courses in high school correlated with retention in STEM majors (Chen & Soldner, 2013). Nosek and Smyth (2011) found connections between gender and internalized math variables, such as warmth for math, identification with math, and self-efficacy; females across the life span showed lower levels of each of these variables, but the authors did not test these against retention outcomes in STEM majors. However, one could hypothesize that having lower levels of warmth toward math and not being able to identify with math would likely impact one’s career decisions, particularly related to math and science fields. Career Interventions and STEM Career theory can provide for understanding one’s interest in STEM fields (Holland, 1973), one’s exposure to STEM fields (Gottfredson, 1981), and one’s beliefs or expectations about the process of choosing a STEM field (Lent, Brown, & Hackett, 2002; Peterson, Sampson, Lenz, & Reardon, 2002). However, career interventions, such as a career planning class, are more likely to make a direct impact on career outcomes with undergraduates. In one review of research on undergraduate career planning courses, more than 90% of the courses produced some measurable positive result for students, such as increased likelihood of completing a major, decreased negative career thinking, and increased career self-efficacy (Reardon & Fiore, 2014). Other researchers have reported similar results with generic undergraduate career planning courses (Osborn et al., 2007; Saunders, Peterson, Sampson, & Reardon, 2000). Researchers have studied structured career planning courses specific to STEM majors with much less frequency. In one such study, Prescod and colleagues (in press) found that students who took a STEM-focused career planning course scored lower on a measure of negative career thinking at the end of the semester. In a similar study, STEM-interested students in a STEM-focused career planning course had lower posttest scores on a measure of negative career thinking than declared STEM majors at the end of the same semester (Belser et al., 2018). Additionally, in a pilot study, Belser and colleagues (2017) found that greater reductions in negative career thinking predicted higher odds of being retained in a STEM major from the first to second year of college; in this same study, the authors found that students who participated in a STEM-focused career planning course were more likely to be retained in a STEM major than students in an alternative STEM course. Researchers have not given ample attention to determining how career planning and other career variables fit into predictive models of retention in STEM majors. Statement of the Problem and Hypotheses As previously noted, prior researchers have paid limited attention to developing predictive models that incorporate career development variables along with demographics and math performance. Developing effective predictive models has implications for researchers, career practitioners, higher education professionals, and the STEM workforce. To this end, the researchers intend to test two such models related to retention in STEM majors using the following hypotheses: Hypothesis 1: First-year to second-year undergraduate retention in STEM majors can be predicted by ethnicity, gender, initial major, math placement–algebra scores, SAT math scores, STEM course participation, and Career Thoughts Inventory (CTI) change scores. Hypothesis 2: First-year to third-year undergraduate retention in STEM majors can be predicted by ethnicity, gender, initial major, math placement–algebra scores, SAT math scores, STEM course participation, and CTI change scores.

RkJQdWJsaXNoZXIy NDU5MTM1