TPC Journal V8, Issue 3- FULL ISSUE
The Professional Counselor | Volume 8, Issue 3 273 Future research in this area would benefit from the inclusion of a wider variety of predictor variables, such as math and science self-efficacy, outcome expectations, and internal processes observed with gender and ethnic minority groups (e.g., stereotype threat; Cundiff et al., 2013; Litzler et al., 2014). The researchers also recommend obtaining a larger representation of ethnic minority groups to ensure an adequate number of cases to effectively run the statistical procedure. Future researchers should consider more complex statistical procedures (e.g., structural equation modeling) and research designs (e.g., randomized control trials) to determine more causal relationships between predictors and the outcome variables. Because the results of this study indicate that a more solidified major selection is associated with higher odds of retention in STEM majors, university career professionals and higher education professionals should strive to develop programming that helps students decide on a major earlier in their undergraduate careers. Structured career development work, often overlooked in undergraduate STEM programming, may be one such appropriate strategy. Additionally, any undergraduate STEM programming must be sensitive to demographic underrepresentation in STEM majors and the STEM workforce and should take steps to provide support for students in these underrepresented groups. Similar to work with undergraduates, this study’s results provide a rationale for school counselors to engage students in STEM career work so that they can move toward a solidified STEM major prior to enrolling in college. The industry-specific career development work discussed within this study is just as important, if not more important, for students in K–12 settings. Moreover, school counselors, through their continued access to students, can serve as an access point for researchers to learn more about the STEM career development process at an earlier stage of the STEM pipeline. All of these endeavors point to the need for counselor educators to better prepare school counselors, college counselors, and career counselors to do work specifically with STEM and to become more involved in STEM career research. In the present study, the researchers built upon prior research in the area of STEM retention to determine which variables can act as predictors of undergraduate STEM retention. The binary logistic regression procedure yielded two models that provide insight on how these variables operate individually and within the larger model. Finally, the researchers identified some key implications for counselors practicing in various settings and for researchers who are interested in answering some of the key questions that still exist with regard to STEM career development and retention. Conflict of Interest and Funding Disclosure Data collected in this study was part of a dissertation study by the first author. The dissertation was awarded the 2018 Dissertation Excellence Award by the National Board for Certified Counselors. References ACT. (2018). The condition of STEM 2017 . Retrieved from www.act.org/stemcondition Agresti, A. (2013). Categorical data analysis (3rd ed.). Hoboken, NJ: Wiley. Beasley, M. A., & Fischer, M. J. (2012). Why they leave: The impact of stereotype threat on the attrition of women and minorities from science, math, and engineering majors. Social Psychology of Education , 15 ,
Made with FlippingBook
RkJQdWJsaXNoZXIy NDU5MTM1