A Call for Action: School Counselor Competence in Working With Trans Students

Clark D. Ausloos, Madeline Clark, Hansori Jang, Tahani Dari, Stacey Diane Arañez Litam

 

Trans youth experience discrimination and marginalization in their homes, communities, and schools. Professional school counselors (PSCs) are positioned to support and advocate for trans youth as dictated by professional standards. However, an extensive review of literature revealed a lack of confidence and competence in counselors working with trans youth and their families. Further, there is a dearth of literature that addresses factors leading to increased school counselor competence with trans students. The current study uses a cross-sectional survey design to contribute to the extant literature and explore how PSCs in the United States work with students in the K–12 public school system. Results from multiple regression analyses indicate that PSCs who have had postgraduate training and report personal and professional experiences with trans students are more competent in working with trans students. Implications for PSCs and school counselor education programs are discussed.

Keywords: trans youth, school counselors, competence, counselor education, multiple regression analysis

 

Trans people experience an incongruence between their sex assigned at birth and their gender identity (GI; Ginicola et al., 2017; McBee, 2013). The term trans encompasses a wide range of gender-expansive identities, including trans (transgender), nonbinary (one who identifies outside the gender binary of male or female), genderqueer or gender-fluid (one who identifies with gender in a fluid, dynamic way) and agender (one who does not identify as having a gender). Trans people face pervasive discrimination and marginalization (Whitman & Han, 2017), leading to severe physical and mental health disparities, like depression, anxiety, and suicidality (James et al., 2016). In schools, trans students face 4 times higher rates of discrimination when compared with cisgender peers (Kosciw et al., 2020; Williams et al., 2021). Trans students are more vulnerable to mental health disorders, a lack of social support, and an increase in self-harm, suicidal ideations, and suicide attempts (Kosciw et al., 2020; Reisner et al., 2014), especially among transmale and nonbinary students (Toomey et al., 2018). These rates are increasing in national trends and are even higher among Black and Latinx trans students (Vance et al., 2021). The COVID-19 pandemic further exacerbated barriers and inequities for trans students, with increasing health concerns, isolation, economic hardships, issues with housing, and limited access to essential clinical care (Burgess et al., 2021).

Increasingly, trans students face systemic legal barriers to their health and well-being (Wang et al., 2016). States including Arkansas, Idaho, Montana, South Dakota, and Tennessee have introduced bills that ban trans students from participating in sports that are congruent with their GI (Transgender Law Center, 2021). In April of 2021, Arkansas banned medical gender-affirming services to students under 18 years of age (American Civil Liberties Union [ACLU], 2021). New Hampshire’s House Bill 68 proposed adding gender-affirming treatments to the definition of child abuse (ACLU, 2021). Beyond political oppression, trans youth experience overt discrimination, verbal abuse, physical and sexual assault, and marginalization within their homes, schools, and places of employment (Human Rights Campaign [HRC], 2018; James et al., 2016). Trans youth additionally face disaffirming and incompetent teachers and medical professionals (Grant et al., 2011; James et al., 2016; Whitman & Han, 2017) and embedded systemic transmisia (the hatred of trans persons; Simmons University Library, 2019). Despite the pervasive mental health concerns faced by trans students (i.e., depression, anxiety, disordered eating, self-harm, suicide), professional school counselors (PSCs) continue to be ill equipped in supporting and advocating for this marginalized population within schools (Simons, 2021). Based upon an analysis of the extant body of research, we found that counselor education training programs lack rigor in working with trans students (O’Hara et al., 2013; Salpietro et al., 2019), counselor educators may hold biased views about trans students (Frank & Cannon, 2010), and there is an absence of quality professional development opportunities on trans issues (Salpietro et al., 2019; Shi & Doud, 2017). It is therefore of paramount importance for PSCs and counselor education programs to obtain a deeper understanding of how to better prepare for and support trans students in schools.

Professional School Counselors and Trans Students
     PSCs focus on academic, career, and social-emotional growth and work as leaders alongside teachers, administration, families, and other stakeholders. PSCs are therefore well positioned to provide safety and support for trans students, promote change, and act as social justice advocates within schools (Bemak & Chung, 2008). The American School Counselor Association (ASCA) mandates that PSCs “promote affirmation, respect, and equal opportunity for all individuals regardless of . . . gender identity, or gender expression . . . and promote awareness of and education on issues related to LGBT students” (2016a, p. 37). PSCs who work with trans students may provide services through the Multitiered Systems of Support lens (MTSS; ASCA, 2019), through collaboration, by supporting school administration and staff (e.g., trainings, meetings, workshops), and through provision of direct student services (e.g., individual and group counseling, working with families). More specifically, PSCs advocate for and with students for name and pronoun changes within schools, trans-inclusive school policies, and increased visibility and normalization of trans people and issues.

ASCA (2016b) adopted a position that PSCs recognize that “the responsibility for determining a student’s gender identity rests with the student rather than outside confirmation from medical practitioners . . . or documentation of legal changes” (p. 64). It is clear that PSCs should possess knowledge and skills in working with and advocating for trans youth through a range of services at various levels and in coordination with other stakeholders in schools, all while respecting students’ autonomy and authenticity (ASCA, 2016a, 2016b, 2019; Bemak & Chung, 2008).

Counselor Education Programs
     Although professional standards provide best practices (ALGBTIC LGBQQIA Competencies Taskforce, 2013; ASCA, 2016a), many PSCs never receive the training necessary to effectively serve trans students (Bidell, 2012; O’Hara et al., 2013; Salpietro et al., 2019). Salpietro and colleagues (2019) reported that counselor incompetence was related to a lack of rigorous training that attends to family systems, intersectionality, and medical issues through gender-affirming therapies (i.e., blockers, hormones, or surgeries). These researchers indicated a need for comprehensive, standardized, and thorough formal training (i.e., graduate school) and informal professional development opportunities. These findings are consistent with Shi and Doud (2017), who recommended PSCs specifically take advantage of conferences and workshops to supplement formal educational curricula. The Gay, Lesbian, and Straight Education Network (GLSEN) conducted a survey that reported about 81% of school mental health professionals received “little to no competency training in their graduate programs related to working with [trans] populations,” and about 74% of participants rated their graduate training programs as “fair or poor” in preparing them for work with trans students (GLSEN et al., 2019, p. xviii). GLSEN and other professional organizations additionally reported about two-thirds of school professionals do not feel prepared to work with trans students (GLSEN et al., 2019). Although there are some professional development opportunities, such as those offered through the World Professional Association for Transgender Health (WPATH), the HRC, and the Society for Sexual, Affectional, Intersex, and Gender-Expansive Identities (SAIGE), there is still a lack of concrete training within graduate programs and through fieldwork experiences and an overall lack of accessible, professional trainings. There is a clear need for increased attention to trans issues in formal educational programs and professional development offerings.

Purpose of the Study and Research Questions

This study examines factors that contribute to PSC competence in working with trans students in K–12 public schools. We highlight the need for PSCs and counselor education training programs to better focus on and support trans students. More specifically, we examine the following PSC factors: (a) the PSC’s GI, (b) whether the PSC has received postgraduate training on trans issues or populations, (c) whether the PSC has worked with self-identified trans students, and (d) whether the PSC knows someone who identifies as trans outside of the school setting.

PSC Gender Identity
     Researchers recommend that special attention is given within a category of interest (i.e., gender identity) to historically marginalized groups, encouraging counselor-researchers to view all samples “in terms of their particularity and to attend to diversity within samples” (Cole, 2009, p. 176). We were intentional in using PSC GI demographic factors in data analysis, attending to diversity among PSC gender identities, as research indicates there may be relationships between counselor GI, privilege and oppression, and multicultural counselor competence (Cole, 2009). Culturally competent counselors engage in self-reflection, examine their own biases and stereotypes, consider how their positions of privilege or oppression impact the therapeutic alliance, and deliver culturally responsive counseling interventions.

Postgraduate Training Addressing Trans Issues
     Researchers note that graduate programs in counselor education are not adequately preparing school counseling students to work with trans students (Bidell, 2012; Farmer et al., 2013; Frank & Cannon, 2010; GLSEN et al., 2019; O’Hara et al., 2013) and that much of the awareness, knowledge, and skills gained in working with this population are result of counselors’ self-seeking professional trainings, education, and workshops that are focused on trans issues and students (Salpietro et al., 2019; Shi & Doud, 2017).

Professional Experiences With Trans Students
     O’Hara and colleagues (2013) reported no significance on scores of competence in working with trans clients between counseling students who completed practicum or internship and those who did not. In the present study, our variable relates to PSCs who have already graduated, reflecting on their professional tenure as PSCs, and if these experiences provided opportunities to work with trans students.

Personal Relationships With Trans People
     O’Hara and colleagues (2013) reported that participants in their study identified informal sources as necessary for gaining trans-affirming knowledge and skills, such as “exposure to or personally knowing someone who [is trans]” (p. 246). Research supports the concept that increasing affirming attitudes and mitigating negative attitudes and beliefs toward trans individuals can be accomplished by exposure and intentional engagement in fostering personal and professional relationships with trans people (Salpietro et al., 2019; Simons, 2021). In forming relationships with trans people, we can listen to and learn from the lived experiences of this community, examine our own biases, and position ourselves as supportive allies, personally and professionally.

Research Questions
     With these factors in mind, the following research questions were identified:

  1. What is the relationship between PSC factors (GI, postgraduate training, PSC work with trans students, and PSC personally knowing someone who is trans) and levels of PSC self-perceived competence in working with trans students in schools?
  2. What is the relationship between PSC factors (GI, postgraduate training, PSC work with trans students, and PSC personally knowing someone who is trans) and PSC awareness in working with trans students in schools?
  3. What is the relationship between PSC factors (GI, postgraduate training, PSC work with trans students, and PSC personally knowing someone who is trans) and PSC knowledge in working with trans students in schools?
  4. What is the relationship between PSC factors (GI, postgraduate training, PSC work with trans students, and PSC personally knowing someone who is trans) and PSC skills in working with trans students in schools?

We hypothesized there would be a statistically significance difference (p > .05) between PSC factors (GI, postgraduate training, PSC work with trans students, and PSC personally knowing someone who is trans) and levels of PSC self-perceived competence in working with trans students in schools. More specifically, we hypothesized that cisfemale PSCs who have had postgraduate training on trans issues, who have worked with trans students, and who personally know someone who is trans, would report higher scores in measures of awareness, knowledge, skills, and overall competence. Cisgender (cis) refers to someone who experiences congruence between their sex assigned at birth and their GI. Research demonstrates that cismales may express more negative attitudes and hold restrictive views toward queer and trans people when compared with cisfemales (Landén & Innala, 2000; Norton & Herek, 2012).

Method

Participants
     With an anticipated medium effect size of 0.15, a desired statistical power level of 0.95, and desired probability level of 0.05 (Israel, 2013), we determined an appropriate minimum sample size for the proposed study was 120 PSCs. Initially, 499 responses were recorded. Of those, 110 were incomplete or had missing data, yielding a total of 389 fully completed surveys. Participants in this study (N = 389) were PSCs with a valid school counseling license working in a public school setting, from kindergarten through 12th grade, in the United States. Participant demographic information can be found in Table 1.

Table 1

Demographic Characteristics of Professional School Counselors (PSCs)

 

Procedures
     For ease of use and accuracy of representation, we used probability sampling, more specifically, a simple random sample selection process (Creswell, 2013). Upon approval by the IRB, we posted a series of three recruitment letters (with 2 weeks between each posting) to PSCs through an online professional forum, ASCA Scene. We also posted our recruitment letter on ASCA Aspects, a monthly e-newsletter. Data were collected over a period of 6 weeks. PSCs who elected to participate were directed to the electronic informed consent document and the survey.

Instrumentation
Demographic Questionnaire
     Participants completed a questionnaire with write-in options for both age and gender and forced-choice responses to gather racial-ethnic identity, years working as a licensed school counselor, the region in which they practiced, and grade levels in which the participants worked. Our four independent variables were collected through the demographic questionnaire. Participants indicated their experiences, if any, with trans students, experiences with postgraduate training on trans issues, and personal relationships with trans people. 

Gender Identity Counselor Competency Scale
     The Gender Identity Counselor Competency Scale (GICCS), a revised version of the Sexual Orientation Counselor Competency Scale (Bidell, 2005), was used to assess PSC competence, the dependent variable in the study. This is the instrument best suited for intended measurement of self-perceived competence (Bidell, 2012; O’Hara et al., 2013). Bidell (2005) developed the instrument based on Sue and colleagues’ (1992) research of multicultural counseling competencies, with the domains of attitudinal awareness, knowledge, and skills. Bidell (2005) reported the Cronbach’s alpha of .90, with subscale scores for internal consistency of .88 for the Awareness subscale, .71 for the Knowledge subscale, and .91 for the Skills subscale (Bidell, 2005, 2012). Test-retest reliability for the overall instrument was found to be .84, with .85 for the Awareness subscale, .84 for the Knowledge subscale, and .83 for the Skills subscale (Bidell, 2005). The GICCS is a 29-item self-report assessment on a 7-point Likert scale (where 1 is not at all true and 7 is totally true). Examples of questions include: “I have received adequate clinical training and supervision to counsel transgender clients” and “The lifestyle of a transgender client is unnatural or immoral” (O’Hara et al., 2013, p. 242). Cronbach’s alpha in the present study was .70, adequate for our analysis.

Awareness Subscale. The Awareness subscale consists of 10 items focused on counselors’ attitudinal awareness and prejudice about trans clients, including statements like “It would be best if my clients viewed a [cisgender] lifestyle as ideal” and “I think that my clients should accept some degree of conformity to traditional [gender] values” (Bidell, 2005, p. 273). Cronbach’s alpha for the Awareness subscale has been reported as .88 (Bidell, 2005) and was .89 in the present sample. Self-awareness and reflection are critical skills for counselors in examining deeply held biases and beliefs and in asking culturally responsive questions to strengthen the therapeutic alliance.

Knowledge Subscale. This subscale of the GICCS consists of eight items focused on counselors’ experiences and skills with trans clients, including statements like “I am aware that counselors frequently impose their values concerning [gender] upon [trans] clients” and “I am aware of institutional barriers that may inhibit [trans] clients from using mental health services” (Bidell, 2005, p. 273). Cronbach’s alpha for the Knowledge subscale was reported as .76 (Bidell, 2005), and was .73 in the present sample. Counselors who impose their own values on a client may cause rifts in the therapeutic alliance and could potentially even harm clients.

Skills Subscale. This subscale of the GICCS consists of 11 items focused on counselors’ experiences and skills with trans clients, including statements like “I have experience counseling [trans male] clients” and “I have received adequate clinical training and supervision to counsel [trans] clients” (Bidell, 2005, p. 273). Cronbach’s alpha for the Skills subscale was reported as .91 (Bidell, 2005) but was .75 in the present sample. Counselors working with trans students need to understand the importance of evolving language and terminologies; utilize affirmative, celebratory, and liberating counseling; and have knowledge of and connection to medical providers who support gender-affirming interventions.

Data Analysis Procedures
Data Cleaning
     We first screened the data to ensure it was usable, reliable, and valid to proceed with statistical analyses. We continued data cleaning by coding the demographic variable of GI 1 through 4: cisfemale (1); cismale (2); nonbinary, trans, and/or genderqueer (3); and agender (4). Racial-ethnic identities were coded 1 through 10: American Indian or Alaska Native (1); Asian or Asian American (2); Black or African American (3); Hispanic, Latino, or Spanish Origin (4); Middle Eastern or North African (5); Native Hawaiian or Other Pacific Islander (6); White (7); Some Other Race, Ethnicity, or Origin (8); Prefer Not to Answer (9); and Multiracial Identity (10). PSC location was also coded 1 through 6: Midwest (1), Northeast (2), South (3), West (4), Puerto Rico or other U.S. Territories (5), and Other (6). Last of the demographic variables, we coded PSC School Level 1 through 4: Elementary (1), Middle School (2), High School (3), and Other (4). In addition, we cleaned variables highlighting PSC professional and personal training and experiences with trans persons. The first variable was dummy coded to reflect participants who had worked with trans students (1; n = 297, 76.3%) and participants who indicated not working with trans students (0; n = 92, 23.7%). The next variable, PSC postgraduate training, was dummy coded for use in data analyses, reflecting those who indicated they engaged in postgraduate training (1; n = 193, 49.6%) and participants who indicated they did not engage in postgraduate training (0; n = 196, 50.4%). The final variable was dummy coded to reflect participants who know someone who is trans outside of the school setting (1; n = 93, 23.9%) and those participants who do not know someone who is trans outside of the school setting (0; n = 296, 76.1%). Per Bidell (2005), we started by reverse scoring coded GICCS items and created new variables for the GICCS total mean score, attitudinal Awareness, Skills, and Knowledge subscales.

Data Analysis
     Post–data cleaning, we entered all the data from the demographic questionnaire and the GICCS into SPSS 26. To best answer the research questions, we used a series of standard multiple regression analyses to determine “the existence of a relationship and the extent to which variables are related, including statistical significance” (Sheperis et al., 2017, p. 131). Although multiple regression analysis can be used in prediction studies, it can also be used to determine how much of the variation in a dependent variable is explained by the independent variables, which is what we intended to measure (Johnson, 2001). Our independent variables were four categorical variables measured by our demographic questionnaire: PSC GI, postgraduate training, PSC work with trans students, and PSC personal relationships with someone who is trans. Our dependent variable was school counselor competence in working with trans students, as measured by the GICCS (Bidell, 2005).

There are many assumptions to consider when conducting a multiple regression analysis, including (a) two or more continuous or categorical independent variables, (b) a continuous dependent variable, (c) independence of residuals (or observations), (d) linearity (both between dependent variable and each of the independent variables, and between the dependent variable and the independent variables as a whole), (e) homoscedasticity, (f) absence of multicollinearity, (g) no significant outliers, and (h) normally distributed residuals (Flatt & Jacobs, 2019). The research variables met assumptions (a) and (b) in conducting multiple regressions. In analyzing data in SPSS, independence of residuals was determined by using the Durbin-Watson statistic, which ranges in value from 0 to 4, with a value near 2 indicating no correlation between residuals. Assumption (c) was met, as the Durbin-Watson value found was 1.46 (Savin & White, 1977). Additionally, we plotted a scatterplot using variables, as well as a partial regression with each of the independent variables and the dependent variable, and observed linear relationships, attending to the assumptions of linearity (d; i.e., a linear relationship between dependent and independent variables) and homoscedasticity (e; i.e., residuals are equal for all values of the predicted dependent variable). Homoscedasticity was also assessed by visual inspection of a plot of studentized residuals versus unstandardized predicted values. To assess the absence of multicollinearity (f), we considered the variance inflation factors (VIF) indicated in the coefficients table (Flatt & Jacobs, 2019). We found VIF values ranging from 1.01 to 1.05, indicating an absence of multicollinearity (f). VIF is a measure of the amount of multicollinearity in a set of multiple regression variables (Flatt & Jacobs, 2019). We checked for unusual points (g): outliers, high leverage points, and highly influential points. We did identify a significant outlier (−3.10) in case number 133 by examining the range of standardized residuals ([−3.10 to 2.34]), which is outside the common cut-off range of three standard deviations (SD). We then inspected the studentized deleted residual values and found a value in case number 133 (−3.15), which falls outside the common cut-off range of 3 SD.

Additionally, we determined two cases of problematic leverage values that were greater than the safe value of 0.2 (0.36 and 0.23). The cases that violated assumptions were filtered out and the standard multiple regression analysis was run again. This time, the data did not violate assumptions (a) through (g). Last, we observed normally distributed standardized residuals (h). To determine if any cases were influential in the data, we examined the Cook’s Distance values, which ranged from .000 to .090. As there were no values above 1, there were no highly influential points. To answer the first research question (the relationship between PSC factors and levels of PSC self-perceived competence in working with trans students in schools as measured by total scores on the GICCS), we used a standard multiple regression analysis (Sheperis et al., 2017). To answer research questions 2 through 4, we conducted standard multiple regression analyses using the Awareness, Knowledge, and Skills subscales as the dependent variables, respectively.

Results 

Correlations Between Variables of Interest
     Prior to the regression analysis, we examined correlations between the variables: PSC GI (cisfemale, cismale, trans, agender), having worked with trans students, postgraduate training experiences, personally knowing someone who is trans, the GICCS Awareness subscale, the GICCS Skills subscale, the GICCS Knowledge subscale, and the GICCS total score. Correlations of variables of interest are found in Table 2. There were multiple significant correlations as determined by Pearson product moment correlations (r). The GICCS total score was significantly correlated with the Awareness subscale (r = −.65, p < .001), the Skills subscale (r = .83, p < .001), and the Knowledge subscale (r = .66, p < .001). The Awareness subscale was significantly correlated with the Skills subscale (r = −.26, p < .001) and the Knowledge subscale (r = .30, p < .001). The Knowledge subscale was also significantly correlated with the Skills subscale (r = .30, p < .001). In examining demographic factors, cisfemale GI was significantly correlated with cismale GI (r = −.90, p < .001), trans GI (r = −.37, p < .001), and agender GI (r = −.21, p < .001). Additionally, cisfemale GI was significantly correlated with having worked with trans students (r = −.12, p = .036), as well as the GICCS total score (r = −.14, p = .005), the Skills subscale (r = −.14, p = .005), and the Knowledge subscale (r = −.15, p = .003). Cismale GI was significantly correlated with the GICCS total score (r = .11, p = .038), the Skills subscale (r = .12, p = .017), and the Knowledge subscale (r = .11, p = .003). Trans GI was significantly correlated with personally knowing someone who is trans (r = .12, p = .002), as well as with the GICCS total score (r = .12, p = .034). Having worked with trans students was significantly correlated with the GICCS total score (r = .41, p <.001), the Skills subscale (r = .55, p < .001), and the Awareness subscale (r = −.11,
p = .032). Postgraduate training was significantly correlated with many variables, including personally knowing someone who is trans (r = .14, p = .005), and with the GICCS total scores (r = .36, p < .001), the Skills subscale (r = .41, p < .001), the Knowledge subscale (r = .19, p < .001), and the Awareness subscale (r = −.10, p = .040). Last, personally knowing someone who is trans was significantly correlated with the GICCS total score (r = .35, p < .001), the Skills subscale (r = .29, p < .001), the Knowledge subscale
(r = .25, p < .001), and the Awareness subscale (r = −.22, p < .001).

 

Table 2

Correlation Table for Variables of Interest

 

Model 1: PSC Competency
     R² for the overall model was 35.2%, with an adjusted R² of 34.1%, a small to moderate size according to Cohen (1988). PSC factors significantly predicted levels of PSC self-perceived competence in working with trans students in schools, F(6, 381) = 34.430, p < .001. In examining beta weights (β), having worked with trans students received the strongest weight in the model (β = .35), followed by postgraduate training (β = .29) and personally knowing someone who is trans (β = .27). The variable with the most weight, having worked with trans students, had a structure coefficient (rs) of .67, and rs2 was 45.2%, meaning that of the 35.2% effect (R2), this variable accounts for 45.2% of the explained variance by itself. This shows that PSCs’ competence is increased by experiences with trans students, engaging in postgraduate trainings, and personally knowing someone who is trans. A summary of regression coefficients and standard errors can be found in Table 3.

 

Table 3

Multiple Linear Regression Analyses Exploring Professional School Counselor Competence

Model 2: PSC Awareness
     R² for the overall model was 5.8%, with an adjusted R² of 6.2%, a very small effect size (Cohen, 1988). PSC factors (GI, postgraduate training, PSC work with trans students, and PSC personal relationship with someone who is trans) significantly predicted awareness of PSC self-perceived competence in working with trans students in schools, F(6, 380) = 3.873, p = .001. Personally knowing someone who is trans was the only significant predictor in this model. We examined the regression coefficients and corresponding data (β = −.20, rs = −0.90, rs2 = 80%). Of the 5.8% effect (R²), personally knowing someone who is trans accounted for 80% of the explained variance by itself.

Model 3: PSC Knowledge
     R² for the overall model was 10.3%, with an adjusted R² of 8.9%, a small effect size (Cohen, 1988). PSC factors (GI, postgraduate training, PSC work with trans students, and PSC personal relationship with someone who is trans) significantly predicted knowledge of PSC self-perceived competence in working with trans students in schools, F(6, 379) = 7.257, p < .001. Personally knowing someone who is trans, postgraduate training, and cismale GI were all significant in this model. Personally knowing someone who is trans received the strongest weight in the model (β = .20, rs = .76), followed by postgraduate training (β = .16, rs = .58) and cismale GI (β = .12, rs = .35). After examining regression coefficients and corresponding data, we determined that of the 10.3% effect (R2), personally knowing someone who is trans accounted for 58.3% of the explained variance by itself. These findings demonstrate that PSC knowledge is strongly supported through fostering personal relationships with trans people.

Model 4: PSC Skills
     R² for the overall model was 50.2%, with an adjusted R² of 49.5%, a medium effect size according to Cohen (1988). PSC factors (GI, postgraduate training, PSC work with trans students, and PSC personal relationship with someone who is trans) significantly predicted self-perceived PSC skills in working with trans students in schools, F(6, 380) = 63.945, p < .001. Having worked with trans students, postgraduate training, and personally knowing someone who is trans were all significant in this model. Having worked with trans students received the strongest weight in the model (β = .51), followed by postgraduate training (β = .35) and personally knowing someone who is trans (β = .20). After examining regression coefficients and corresponding data, we determined that of the 50.2% effect (R2), having worked with trans students accounted for 79% of the explained variance by itself. Counselors can augment their skills by staying updated on appropriate language and terminologies and by fostering relationships with affirming providers and medical professionals in the community.

Discussion

The most salient finding in this model is that PSCs who worked with trans students were strongly positively correlated with GICCS total scores (r = .61, p < .001). This finding may indicate that increased exposure to trans students may subsequently increase competency in working with trans populations. Our research findings supplement existing studies that reported a relationship between affirming attitudes toward trans students and professional exposure to trans people (Salpietro et al., 2019; Simons, 2021). Avoidance of counseling trans students because of discomfort is not only unethical (ASCA, 2016b) but inhibits a PSC’s ability to develop their GI competence (Henry & Grubbs, 2017). Thus, it is imperative that PSCs receive opportunities to work with trans students (through practicum or internship experiences); consult with experienced, gender-affirming PSCs who have worked with trans students; and “expose themselves to published texts . . . films . . . [and] service-learning activities . . . to gain a better understanding of the experiences of [trans] persons” (O’Hara et al., 2013, p. 251). Additionally, PSCs must engage in constant self-reflection, introspection, and processing of biases and worldviews to provide culturally competent care to trans students.

Counseling Competence
     Postgraduate training was moderately positively correlated with GICCS total score (r = .43, p < .001), indicating that additional postgraduate training in trans issues increased competence in the present sample (Model 1). This is consistent with extant literature, which demonstrated that PSCs who received postgraduate training were more competent in providing affirming services to trans students compared to PSCs who had not received the training (Salpietro et al., 2019; Shi & Doud, 2017). Finally, the presence of personal relationships with trans people was moderately positively correlated with GICCS total scores (r = .47, p < .001). These results support current literature in that PSCs who currently have or have had personal relationships with trans people were more competent in providing affirming services to trans students (GLSEN et al., 2019; O’Hara et al., 2013; Salpietro et al., 2019; Simons, 2021).

Awareness
     We explored the relationship between PSC factors on the Awareness subscale of the GICCS in the second research question (Model 2). In examining coefficients for the model, having personal relationships with trans people is associated with a decrease in GICCS Awareness subscale scores, a weak, negative correlation (r = −.19, p = .001). This finding may indicate that people who did not know someone personally who is trans would score slightly higher on the Awareness subscale. These unexpected findings are contrary to existing research, which reported that engaging in personal relationships with trans people increased affirming attitudes and mitigated negative attitudes (Henry & Grubbs, 2017; Salpietro et al., 2019). Because of the lack of practical significance of PSC factors (i.e., GI, postgraduate training, PSC work with trans students, and PSC personal relationship with someone who is trans) on the Awareness subscale, these results should be considered with caution.

Knowledge
     In the third research question, we explored the relationship between PSC factors on the Knowledge subscale of the GICCS (Model 3). In examining coefficients for the model, PSC cisgender male GI was moderately positively correlated with the Knowledge subscale scores (r = .476, p = .032), indicating that cismale PSCs scored moderately higher on the Knowledge subscale when compared with other PSC gender identities in the present sample. One possible explanation is the present study’s sample of cisfemales (N = 368, 94.6%) and cismales (N = 17, 4.4%). Within this sample, the ages of the cismale PSCs could reflect a time in which counselor education programs increased attention to diversity, whereas this was not always a main tenet in training among older PSCs (who may be more represented by cisfemale PSCs in this sample [Bemak & Chung, 2008]). Presently, the Council for Accreditation of Counseling and Related Educational Programs (CACREP; 2015) requires accredited counselor education programs to deliver a counseling curriculum that includes specific attention to social and cultural diversity, an essential foundation of competent counselors. Additionally, PSC postgraduate training was weakly positively correlated with Knowledge subscale scores (r = .292, p = .002), which supports the literature that PSCs who engage in professional training opportunities outside of graduate school increase their knowledge of trans students and trans issues (Salpietro et al., 2019; Shi & Doud, 2017). Having personal experiences with trans people was moderately positively correlated with Knowledge subscale scores (r = .434, p < .001), indicating that those PSCs who personally knew a trans person felt more confident and competent in their knowledge about trans students and issues. This supports current literature (GLSEN et al., 2019; Henry & Grubbs, 2017; O’Hara et al., 2013; Salpietro et al., 2019) showing that PSCs who intentionally engaged in and fostered personal relationships with trans people reported greater competence.

Skills
     Finally, we explored the relationship between PSC factors (GI, postgraduate training, PSC work with trans students, and PSC personal relationship with someone who is trans) on the Skills subscale of the GICCS in research question 4 (Model 4). In examining coefficients for the model, having worked with trans students was moderately positively correlated with Skills subscale scores (r = .545, p < .001), which may indicate that PSCs who work with trans students will be more likely to employ the necessary supports to ensure growth in “academic, career and social/emotional development” (ASCA, 2016a, para. 1). This is supported by literature in which researchers reported number of students worked with and “interpersonal contact” (personal exposure) as positive predictors of affirmative counselor competence (Bidell, 2012; Farmer et al., 2013). PSCs play an essential role in advocating for and removing barriers for trans students, which improves trans students’ well-being, academic success, and interpersonal growth. PSC postgraduate training was strongly positively correlated with Skills subscale scores (r = .845, p < .001), which may indicate that PSCs who engage in professional development opportunities and trainings gain essential skills for working with trans students. This finding is consistent with extant research that reported the importance of postgraduate training and professional development opportunities on trans topics (Bidell, 2012; Frank & Cannon, 2010; GLSEN et al., 2019; O’Hara et al., 2013). Finally, knowing someone personally who is trans was moderately positively correlated with Skills subscale scores (r = .576, p < .000), which may mean that having familiarity and exposure to trans folks increases PSC’s self-perceived skills.

Implications

Professional School Counselors
     Based on the results of our study, PSCs who worked with trans students reported significantly higher scores of overall self-perceived competence compared to PSCs who had not worked with trans students. Specifically, our results indicate a link between PSCs having worked with trans students and higher scores on the Knowledge subscale. The GICCS Knowledge subscale addresses PSC knowledge of trans psychosocial issues (Bidell, 2005). This supports the idea that PSCs who work with self-identified trans students have a deeper understanding of the social and psychological challenges faced by trans people, and these experiences increase their comfort in working with trans students. All PSCs are required to protect and support the well-being of queer and trans youth and must have foundational knowledge and familiarity with trans students and issues (ASCA, 2016b). PSCs must attend professional development offerings on trans issues, and counselor education programs must provide increased time and attention to discussing trans issues, clients, and students.

PSC postgraduate training experiences are significantly linked to an overall increase in scores on the GICCS, indicating that PSC postgraduate experiences contribute to PSCs feeling more confident and competent in working with trans students. We conceptualized postgraduate training experiences as any training or education focused on trans persons or issues that a PSC received after their graduate program education. These results indicate that to increase competence and provide affirming, ethical care to trans students, PSCs should engage in some type of postgraduate training on trans issues and students, especially if they are unfamiliar with trans issues. These results are congruent with other studies, which found no significance in the relationship between groups on the Awareness subscale, but significant relationships on both the Knowledge and Skills subscales, with professional training experiences (Bidell, 2005; Rutter et al., 2008). PSCs are therefore encouraged to join professional organizations that promote best practices in working with trans students, like WPATH, the HRC, and SAIGE, as these organizations often offer professional development opportunities. It is essential that PSCs seek out trainings that are specific to trans students and issues, attend to unique psychosocial barriers, outline best practices, describe social/medical affirming care, and provide an overview of ethical and legal issues.

Of all the variables in the present study, PSCs knowing someone who identifies as trans was significantly linked to an increase in overall confidence and competence, as well as a significant increase in both Knowledge and Skills. Surprisingly, PSCs who indicated they did not know someone who identified as trans scored slightly higher on the Awareness subscale scores when compared with PSCs who did. The Awareness subscale of the GICCS examines a PSC’s self-awareness of anti-trans biases and stigmatization (Bidell, 2005). This result is contrary to existing research, which reported that engaging in personal relationships with trans folks increased affirming attitudes and mitigated negative attitudes (Henry & Grubbs, 2017; Salpietro et al., 2019). The link between a PSC personally knowing someone who is trans and a counselor’s competence in knowledge and skills supports extant literature that speaks to the importance of non–work-related experiences with trans people (e.g., personal, familial, social) and an increase in counselors’ competence in working with trans students (Whitman & Han, 2017). It is important that PSCs continue to monitor and increase their personal engagement with trans communities, as this significantly links to PSCs feeling more comfortable and more competent in working with trans students. Personal experiences may include fostering connections to trans family members, friends, and trans people through community organizations (GLSEN et al., 2019; Henry & Grubbs, 2017; Salpietro et al., 2019). Given the findings of our study, it is important for PSCs to connect to affirming resources in their communities. PSCs may consider exploring the multitude of resources offered by GLAAD (glaad.org), the National Center for Transgender Equality (NCTE; transequality.org), and PFLAG (pflag.org).

Counselor Education Programs
     Our results indicate that those PSCs who engage in professional development are more competent than those who do not. Professional counseling organizations (i.e., ASCA) and accrediting bodies (i.e., CACREP) mandate that school counselors-in-training receive formal training in social and cultural diversity (F.2; CACREP, 2015), including multicultural counseling competencies (F.2.c.; CACREP, 2015), and deliver a comprehensive “counseling program that advocates for and affirms all students . . . including . . . gender, gender identity and expression” (ASCA, 2016a, para. 3). Although current standards call for the inclusion of LGBTQIA+ issues within counselor education curricula, the reality is that counselors-in-training receive minimal training in working with trans and gender-expansive students (Frank & Cannon, 2010; O’Hara et al., 2013). It is imperative that CE programs and counselor educators broaden the scope of learning about trans issues, going beyond the minimal requirements (CACREP, 2015) and providing depth and rigor in gender-related coursework in diversity courses. This research supports other emergent literature which recommends that counselor education programs offer additional, specific courses related to affectional and sexual identities (LGBQ+), and gender-expansive identities (trans, nonbinary), as covering specific issues and populations increases counselor competency (Bidell, 2012; Henry & Grubbs, 2017; O’Hara et al., 2013, Salpietro et al., 2019).

Limitations and Directions for Future Research
     Limitations of the study include potential social desirability factors and inattentive responding, which may influence the quality of the data, as the study relied on self-report. Particularly, we note that the findings of higher self-awareness for PSCs who did not know someone who identified as trans could be a potential result of social desirability factors. Although the present study confirms that certain professional and personal factors contribute to PSCs increased competence in working with trans students in the present sample, additional research should be conducted. Also, much of our sample consisted of White ciswomen and, therefore, we caution readers about generalizing these findings to school counselors outside of those identities. The revised GICCS has not been used in many studies focusing on trans populations and additional research is needed to assess its validity with PSCs and trans youth (Bidell, 2005, 2012). Future researchers should consider additive studies that more deeply examine the types of professional development opportunities that promote PSC competency, including length, location, modality, themes, and expertise of presenter(s). Knowing these factors is important for crafting and delivering meaningful and competence-fostering professional development opportunities for PSCs. Also, future studies should examine unique nuances within trans groups, such as nonbinary and gender-fluid students (Toomey et al., 2018), and highlight the voices of trans students of color (Vance et al., 2021). Finally, future studies should also include demographic factors like religiosity and spirituality and their correlation to PSC GI competence, building on the work of Farmer and colleagues (2013).

Conclusion

This study highlights the need for increased attention to trans issues in many domains: among PSCs, within school counseling training programs, and in existing professional development offerings. ASCA mandates that PSCs be advocates for trans students, but there is a lack of attention to trans issues in school counseling training programs, leading PSCs to feel unprepared and to seek outside professional development offerings. The study also highlights the importance of building community and connections with trans people in and outside of professional settings, leading to increased PSC competence in professional settings. PSCs should continue to learn about the evolving language, trends, and needs of the trans community, ideally from those who are part of that community. Additionally, PSCs should engage with and use resources from professional trans-affirming organizations, such as WPATH, HRC, SAIGE, GLAAD, NCTE, and PFLAG.

 

Conflict of Interest and Funding Disclosure
The authors reported no conflict of interest
or funding contributions for the development
of this manuscript.

 

References

ALGBTIC LGBQQIA Competencies Taskforce. (2013). Association for Lesbian, Gay, Bisexual, and Transgender Issues in counseling competencies for counseling with Lesbian, Gay, Bisexual, Queer, Questioning, Intersex, and Ally individuals. Journal of LGBT Issues in Counseling, 7(1), 2–43. https://doi.org/10.1080/15538605.2013.755444

American Civil Liberties Union. (2021). Legislation affecting LGBTQ rights across the country 2021.
https://www.aclu.org/legislation-affecting-lgbt-rights-across-country

American School Counselor Association. (2016a). ASCA ethical standards for school counselors. https://www.schoolcounselor.org/getmedia/f041cbd0-7004-47a5-ba01-3a5d657c6743/Ethical-Standards.pdf

American School Counselor Association. (2016b). The school counselor and transgender/gender-nonconforming youth. https://schoolcounselor.org/Standards-Positions/Position-Statements/ASCA-Position-Statements/The-School-Counselor-and-Transgender-Gender-noncon

American School Counselor Association. (2019). ASCA school counselor professional standards & competencies.
https://www.schoolcounselor.org/getmedia/a8d59c2c-51de-4ec3-a565-a3235f3b93c3/SC-Competencies.pdf

Bemak, F., & Chung, R. C.-Y. (2008). New professional roles and advocacy strategies for school counselors: A multicultural/social justice perspective to move beyond the nice counselor syndrome. Journal of Counseling & Development, 86(3), 372–381. https://doi.org/10.1002/j.1556-6678.2008.tb00522.x

Bidell, M. P. (2005). The Sexual Orientation Counselor Competency Scale: Assessing attitudes, skills, and knowledge of counselors working with lesbian, gay, and bisexual clients. Journal of Counselor Education and Supervision, 44(4), 267–279. https://doi.org/10.1002/j.1556-6978.2005.tb01755.x

Bidell, M. P. (2012). Examining school counseling students’ multicultural and sexual orientation competencies through a cross-specialization comparison. Journal of Counseling & Development, 90(2), 200–207.
https://doi.org/10.1111/j.1556-6676.2012.00025.x

Burgess, C. M., Batchelder, A. W., Sloan, C. A., Ieong, M., & Streed, C. G., Jr. (2021). Impact of the COVID-19 pandemic on transgender and gender diverse health care. The Lancet, 9(11), 729–731.
https://doi.org/10.1016/S2213-8587(21)00266-7

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed). Routledge.

Cole, E. R. (2009). Intersectionality and research in psychology. American Psychologist, 64(3), 170–180. https://doi.org/10.1037/a0014564

Council for Accreditation of Counseling and Related Educational Programs. (2015). 2016 CACREP standards. https://www.cacrep.org/for-programs/2016-cacrep-standards

Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). SAGE.

Farmer, L. B., Welfare, L. E., & Burge, P. L. (2013). Counselor competence with lesbian, gay, and bisexual clients: Differences among practice settings. Journal of Multicultural Counseling and Development, 41(4), 194–209. https://doi.org/10.1002/j.2161-1912.2013.00036.x

Flatt, C., & Jacobs, R. L. (2019). Principle assumptions of regression analysis: Testing, techniques, and statistical reporting of imperfect data sets. Advances in Developing Human Resources, 21(4), 484–502.
https://doi.org/10.1177/1523422319869915

Frank, D. A., II, & Cannon, E. P. (2010). Queer theory as pedagogy in counselor education: A framework for diversity training. Journal of LGBT Issues in Counseling, 4(1), 18–31. https://doi.org/10.1080/15538600903552731

Ginicola, M. M., Smith, C., & Filmore, J. M. (2017). Affirmative counseling with LGBTQI+ people. American Counseling Association.

Gay, Lesbian, & Straight Education Network, American School Counselor Association, American Council for School Social Work, & School Social Work Association of America. (2019). Supporting safe and healthy schools for lesbian, gay, bisexual, transgender, and queer students: A national survey of school counselors, social workers, and psychologists. GLSEN. https://www.glsen.org/sites/default/files/2019-11/Supporting_Saf
e_and_Healthy_Schools_%20Mental_Health_Professionals_2019.pdf

Grant, J. M., Mottet, L. A., Tanis, J., Harrison, J., Herman, J. L., & Keisling, M. (2011). Injustice at every turn: A report of the National Transgender Discrimination Survey. National Center for Transgender Equality and National Gay and Lesbian Task Force. https://transequality.org/sites/default/files/docs/resources/NTDS_Report.pdf

Henry, H. L., & Grubbs, L. (2017). Best practices for school counselors working with transgender students. In G. R. Walz & J. C. Bleuer (Eds), Ideas and research you can use: VISTAS 2016. https://bit.ly/HenryTrans2017

Human Rights Campaign. (2018). 2018 LGBTQ Youth Report. https://bit.ly/HRCLGBTQReport

Israel, G. D. (2013). Determining sample size. Agricultural Education and Communication Department, UF/IFAS Extension. https://bit.ly/Israel2013SampleSize

James, S. E., Herman, J. L., Rankin, S., Keisling, M., Mottet, L., & Anafi, M. (2016). The report of the 2015 U.S. Transgender Survey. National Center for Transgender Equality. https://transequality.org/sites/default/file
s/docs/usts/USTS-Full-Report-Dec17.pdf

Johnson, B. (2001). Toward a new classification of nonexperimental quantitative research. Educational Researcher, 30(2), 3–13. https://doi.org/10.3102/0013189X030002003

Kosciw, J. G., Clark, C. M., Truong, N. L., & Zongrone, A. D. (2020). The 2019 National School Climate Survey: The experiences of lesbian, gay, bisexual, transgender, and queer youth in our nation’s schools. GLSEN. https://www.glsen.org/sites/default/files/2020-10/NSCS-2019-Full-Report_0.pdf

Landén, M., & Innala, S. (2000). Attitudes toward transsexualism in a Swedish national survey. Archives of Sexual Behavior, 29(4), 375–388. https://doi.org/10.1023/A:1001970521182

McBee, C. (2013). Towards a more affirming perspective: Contemporary psychodynamic practice with trans* and gender non-conforming individuals. The University of Chicago School of Social Service Administration (Org.) Advocates’ Forum: The University of Chicago, 37–52. The University of Chicago. https://crownschool.uchicago.edu/contemporary-psychodynamic-trans-and-gender-non-conforming-individuals

Norton, A. T., & Herek, G. M. (2012). Heterosexuals’ attitudes toward transgender people: Findings from a national probability sample of U.S. adults. Sex Roles, 68, 738–753. https://doi.org/10.1007/s11199-011-0110-6

O’Hara, C., Dispenza, F., Brack, G., & Blood, R. A. C. (2013). The preparedness of counselors in training to work with transgender clients: A mixed methods investigation. Journal of LGBT Issues in Counseling, 7(3), 236–256. https://doi.org/10.1080/15538605.2013.812929

Reisner, S. L., White, J. M., Dunham, E. E., Heflin, K., Begenyi, J., Cahill, S., & Project VOICE Team. (2014). Discrimination and health in Massachusetts: A statewide survey of transgender and gender nonconforming adults. The Fenway Institute. http://fenwayfocus.org/wp-content/uploads/2014/07/The-Fenway-Institut
e-MTPC-Project-VOICE-Report-July-2014.pdf

Rutter, P. A., Estrada, D., Ferguson, L. K., & Diggs, G. A. (2008). Sexual orientation and counselor competency: The impact of training on enhancing awareness, knowledge and skills. Journal of LGBT Issues in Counseling, 2(2), 109–125. https://doi.org/10.1080/15538600802125472

Salpietro, L., Ausloos, C., & Clark, M. (2019). Cisgender professional counselors’ experiences with trans* clients. Journal of LGBT Issues in Counseling, 13(3), 198–215. https://doi.org/10.1080/15538605.2019.1627975

Savin, N. E., & White, K. J. (1977). The Durbin-Watson Test for serial correlation with extreme sample sizes or many regressors. Econometrica, 45(8), 1989–1996. https://doi.org/10.2307/1914122

Sheperis, C. J., Young, J. S., & Daniels, M. H. (2017). Counseling research: Quantitative, qualitative, and mixed methods (2nd ed.). Pearson.

Shi, Q., & Doud, S. (2017). An examination of school counselors’ competency working with lesbian, gay and bisexual and transgender (LGBT) Students. Journal of LGBT Issues in Counseling, 11(1), 2–17.
https://doi.org/10.1080/15538605.2017.1273165

Simmons University Library. (2019). Anti-Oppression: Anti-Transmisia. https://simmons.libguides.com/anti-opp
ression/anti-transmisia

Simons, J. D. (2021). School counselor advocacy for gender minority students. PLoS ONE, 16(3), e0248022. https://doi.org/10.1371/journal.pone.0248022

Sue, D. W., Arredondo, P., & McDavis, R. J. (1992). Multicultural counseling competencies and standards: A call to the profession. Journal of Counseling & Development, 70(4), 477–486. https://doi.org/10.1002/j.1556-6676.1992.tb01642.x

Toomey, R. B., Syvertsen, A. K., & Shramko, M. (2018). Transgender adolescent suicide behavior. Pediatrics, 142(4), e20174218. https://doi.org/10.1542/peds.2017-4218

Transgender Law Center. (2021). National equality map. https://transgenderlawcenter.org/equalitymap

Vance, S. R., Jr., Boyer, C. B., Glidden, D. V., & Sevelius, J. (2021). Mental health and psychosocial risk and protective factors among Black and Latinx transgender youth compared with peers. JAMA Network Open, 4(3), e213256. https://doi.org/10.1001/jamanetworkopen.2021.3256

Wang, T., Solomon, D., Durso, L. E., McBride, S., & Cahill, S. (2016). State anti-transgender bathroom bills threaten transgender people’s health and participation in public life: Policy brief. The Fenway Institute and Center for American Progress. https://fenwayhealth.org/wp-content/uploads/2015/12/COM-2485-Transgender-Bathroom-Bill-Brief_v8-pages.pdf

Whitman, C. N., & Han, H. (2017). Clinician competencies: Strengths and limitations for work with transgender and gender non-conforming (TGNC) clients. International Journal of Transgenderism, 18(2), 154–171. https://doi.org/10.1080/15532739.2016.1249818

Williams, A. J., Jones, C., Arcelus, J., Townsend, E., Lazaridou, A., & Michail, M. (2021). A systematic review and meta-analysis of victimisation and mental health prevalence among LGBTQ+ young people with experiences of self-harm and suicide. PLoS ONE, 16(1), e0245268.
https://doi.org/10.1371/journal.pone.0245268

 

Clark D. Ausloos, PhD, NCC, LPC, LPSC, is a clinical assistant professor at the University of Denver. Madeline Clark, PhD, NCC, ACS, LPC (VA), LPCC (OH), is an associate professor at the University of Toledo. Hansori Jang, PhD, NCC, is an assistant professor at Hankuk University of Foreign Studies. Tahani Dari, PhD, NCC, LPC (MI), LPSC, is an assistant professor at the University of Toledo. Stacey Diane Arañez Litam, PhD, NCC, CCMHC, LPCC-S, is an assistant professor at Cleveland State University. Correspondence may be addressed to Clark D. Ausloos, 15578 John F. McCarthy Way, Perrysburg, OH 43551, clark.ausloos@du.edu.

School Counselors’ Exposure to Suicide, Suicide Assessment Self-Efficacy, and Workplace Anxiety: Implications for Training, Practice, and Research

Alexander T. Becnel, Lillian Range, Theodore P. Remley, Jr.

 

In a national sample of current school counselors with membership in the American School Counselor Association (N = 226), we examined the prevalence of suicide training among school counselors as well as differences in suicide assessment self-efficacy and workplace anxiety between school counselors who were exposed to student suicide and those who were not. The results indicate that 38% of school counselors were not prepared for suicide prevention during graduate training. Although school counselors’ exposure to suicide was not related to their workplace anxiety, those who were exposed to a student suicide attempt had higher suicide assessment self-efficacy scores than those who were not. This study demonstrates the impact of suicide exposure on school counselors and the need for additional suicide assessment training.

Keywords: school counselors, suicide, suicide assessment, self-efficacy, workplace anxiety

 

     Suicide continues to be a growing concern for young people in the United States. Suicide is the second leading cause of death among children between the ages of 11 and 18, claiming the lives of 2,127 middle school– and high school–aged children in 2019 alone (Centers for Disease Control and Prevention [CDC], 2021). In 2019, a nationwide survey found that 18.8% of high school students reported seriously considering attempting suicide, 15.7% reported making a plan to attempt suicide, and 8.9% reported attempting suicide (Ivey-Stephenson et al., 2019). As youth suicide rates continue to rise (National Institute of Mental Health [NIMH], 2019), it is becoming increasingly important to understand how school counselors are prepared to work with suicidal youth, as well as the impact of suicidality on them.

     Children and adolescents spend significant amounts of time at school, making school counselors the primary suicide and risk assessors for this population (American School Counselor Association [ASCA], 2020b). School counselors are more likely to assess youth for suicide risk than any other mental health professional (Schmidt, 2016). In 2002, a national study of ASCA members found that 30% of professional school counselors experienced a suicide-related crisis event while they were graduate student interns (Allen et al., 2002). In a more recent study, about two thirds of school counselors reported that they were conducting multiple suicide assessments each month (Gallo, 2018). Stickl Haugen et al. (2021) found that 79.8% of school counselors worked with a student who had previously attempted suicide and 36.7% experienced a student’s death by suicide. As school counselors become more frequently exposed to student suicide, it is important to understand their preparation for this role and the impact of these events on the school counselors themselves.

School Counselor Suicide and Crisis Training
     Although school counselors are often exposed to student suicide, many school counselors lack appropriate crisis intervention and suicide assessment training (Allen et al., 2002; Springer et al., 2020; Wachter Morris & Barrio Minton, 2012) and lack confidence in their ability to assess students for suicide risk (Gallo, 2018; Schmidt, 2016). About 20 years ago, one third of school counselors entered the field without any formal crisis intervention coursework and nearly 60% did not feel adequately prepared to handle a school crisis event (Allen et al., 2002). Ten years later, school counselors did not fare any better, with less than a quarter of school counselors reporting that they completed a course in crisis intervention and nearly two thirds reporting that a crisis intervention course was not even offered during their master’s program (Wachter Morris & Barrio Minton, 2012). Not surprisingly, therefore, school counselors feel unprepared. In a national survey, 44% of school counselors reported being unprepared for a student suicide attempt, and 57% reported being unprepared for a student’s death by suicide (Solomonson & Killam, 2013). In another national survey, Gallo (2018) found that only 50% of school counselors thought that their training adequately prepared them to assess suicidal students, and only 59% felt prepared to recognize a student who was at risk. These results are especially troubling considering that the Council for Accreditation of Counseling and Related Educational Programs (CACREP) requires school counselor education programs to provide both suicide prevention and suicide assessment training (CACREP, 2015).

Exposure to Suicide and Self-Efficacy
     Mental health professionals often question their professional judgment following an exposure to suicide (Sherba et al., 2019; Thomyangkoon & Leenars, 2008). Consequently, it is imperative to explore school counselor self-efficacy in the aftermath of a student suicide. Self-efficacy is the degree to which individuals believe that that they can achieve self-determined goals, and individuals are more likely to be successful in achieving those goals simply by belief in their success (Bandura, 1986). Counselor self-efficacy is defined as counselors’ judgment of their ability to provide counseling to their clients (Larson et al., 1992). As counselors spend more years in practice, their self-efficacy increases (Goreczny et al., 2015; Kozina et al., 2010; Lent et al., 2003). Further, counselor education faculty have significantly higher levels of suicide assessment self-efficacy than their students (Douglas & Wachter Morris, 2015). The relationship between counselor self-efficacy and work experience is well documented, so it is imperative to control for years of counseling experience as a potential covariate when studying other factors that can affect counselor self-efficacy.

     Although the literature regarding school counselors’ exposure to suicide is sparse, more studies have focused on the experiences of related professions, such as clinical counselors, social workers, psychiatrists, and psychologists. In a national survey, 23% of clinical counselors experienced a client’s death by suicide at some point in their career (McAdams & Foster, 2002). In the aftermath of their clients’ deaths by suicide, those counselors reported a loss of self-esteem and an increase of intrusive thoughts. They increased referrals for hospitalization for clients at risk, gave increased attention to signs for suicide, and increased their awareness of legal liabilities in their practices. In a study of community-based mental health professionals who experienced a client death by suicide, one third considered changing careers and about 15% considered early retirement in the aftermath of the suicide (Sherba et al., 2019). Psychologists who felt responsible for the death were more likely to experience a sense of professional incompetence (Finlayson & Graetz Simmonds, 2018). Among psychiatrists, those who experienced a patient’s suicidal death were more likely in the future to suggest hospitalization for patients who showed risk signs for suicide (Greenberg & Shefler, 2014). Additionally, 20% of the psychiatrists in Thomyangkoon and Leenars’s (2008) study considered changing professions after experiencing a patient death by suicide. Given the similarities in these professions, it is reasonable to suggest that school counselors may feel more anxious about their jobs following a suicide exposure.

     To date, there are only three published studies that explore suicide exposures among school counselors (Christianson & Everall, 2008; Gallo et al., 2021; Stickl Haugen et al., 2021). In a qualitative study, high school counselors felt a lack of personal support from their fellow staff members and noted the importance of self-care in the aftermath of a student death by suicide. Additionally, those who lost students to suicide thought that a lack of practice standards made it difficult to navigate these difficult situations (Christianson & Everall, 2008). In another qualitative study, elementary school counselors who worked with suicidal students recognized their important work in preventing suicide but also reported a lack of suicide prevention training opportunities tailored toward working with young children (Gallo et al., 2021). In a quantitative study, most school counselors thought that a student’s death by suicide left both personal and professional impacts on their lives. These school counselors most often reported low mood, a sense of guilt or responsibility, and preoccupation with the incident as personal impacts. They also identified heightened awareness of suicide risk, more professional caution around suicide, and seeking additional training as professional impacts. The researchers suggested that future studies should determine if the number of student deaths by suicide influences the impact of the suicide exposure (Stickl Haugen et al., 2021). However, this study did not examine anxiety, an important personal impact, nor did it examine self-efficacy in dealing with suicide attempts, a more likely occurrence than suicide deaths.

Research Questions
     The following research questions guided this study:

  • What is the prevalence of graduate and postgraduate training in suicide prevention, crisis intervention, and suicide postvention among current school counselors?
  • Are there differences in suicide assessment self-efficacy between school counselors exposed and not exposed to student deaths by suicide and suicide attempts, controlling for years of school counseling experience as a covariate?
  • Does the number of suicide exposures relate to school counselors’ level of suicide assessment self-efficacy when controlling for years of school counseling experience as a covariate?
  • Are there differences in workplace anxiety between school counselors exposed and not exposed to student deaths by suicide and suicide attempts, controlling for years of school counseling experience as a covariate?

Method

Procedure
     We obtained approval from our university’s Human Subjects Protection Review Committee prior to conducting this study. Using a random number generator, we randomly selected 5,000 members from the ASCA member directory to receive a link to the survey. When potential participants clicked the link, they viewed and agreed to an informed consent statement before they were permitted to view the survey. This statement also informed participants that they could stop participation or withdraw their participation at any time. Upon agreement to the informed consent statement, participants were directed to the survey. This online survey was administered via Qualtrics, which allowed them to respond anonymously.

Participants
     From the 5,000 potential participants, 422 began the survey. From these participants, 101 opened the survey and did not answer any questions, 5 did not agree to the informed consent statement, 29 reported that they were not current school counselors, and 60 did not complete the survey. Thus, 226 of the 5,000 ASCA members completed the survey (4.52%). An a priori power analysis (Cohen, 1992) with a power of .8, a medium effect size, and α = .05 determined that the required sample size for our most robust test was 175.

     Participants were 226 current school counselors (201 women, 88.9%; 25 men, 11.1%). The racial categories included 192 White (85%), nine Black or African American (4%), eight “other” races (3.5%), six Asian (2.7%), five biracial or multiracial (2.2%), three American Indian or Alaska Native (1.3%), and three not reporting race (1.3%). The ethnicity categories included 210 participants (92.9%) who were not of Hispanic or Latino or Spanish origin and 16 (7.1%) who were of Hispanic or Latino or Spanish origin. The mean age was 39 years (SD = 10.68), and the mean years of experience working as a school counselor was 7 (SD = 6.98). With regard to school setting, 52 school counselors worked in an elementary or primary school (23%), 58 worked in a middle or junior high school (25.7%), 81 worked in a high school (35.8%), 19 worked in a K–12 school (8.4%), and 16 worked in another type of school not listed (7.1%). Although ASCA does not provide demographic information about their members, this sample is similar in its demographic makeup to the sample in Gilbride et al.’s (2016) study, which sought to describe the demographic identity of ASCA’s membership.

Instrumentation
     The survey packet consisted of three instruments: the demographic questionnaire, the Counselor Suicide Assessment Efficacy Survey (CSAES; Douglas & Wachter Morris, 2015), and the Workplace Anxiety Scale (WAS; McCarthy et al., 2016).

Demographic Questionnaire
     Using a demographic questionnaire, we asked participants to identify the following information: sex, race, ethnicity, age, years of school counseling experience, and school type (e.g., high school, middle school). Additionally, we asked participants to identify the types of suicide exposures that they have encountered in their school counseling careers. If they reported exposure to either deaths by suicide or suicide attempts, the survey followed up with additional questions about the number of exposures, the amount of time since the first suicide exposure, and the amount of time since the most recent suicide exposure. We asked participants if their schools had crisis plans or crisis teams. We also asked participants if they had training in suicide prevention, crisis intervention, and suicide postvention during graduate school and the number of postgraduate training hours in each of these areas.

CSAES
     The CSAES evaluates counselors’ confidence in their ability to assess clients for suicide risk and intervene with a client at risk of suicide. It includes 25 items in four subscales: General Suicide Assessment, Assessment of Personal Characteristics, Assessment of Suicide History, and Suicide Intervention. Each item is rated on a 5-point Likert scale from 1 (not confident) to 5 (highly confident). High scores indicate high self-efficacy. Among school counselors in the original study, each subscale had good internal consistency (α = .88–.81) and acceptable goodness of fit. As suggested by Douglas and Wachter Morris (2015), we scored each subscale separately and averaged each score. This process created four comparable subscale scores.

WAS
     The WAS measures participants’ job-related anxiety. This scale asks participants to rate eight items such as “I worry that my work performance will be lower than that of others at work” on a 5-point scale from 1 (strongly disagree) to 5 (strongly agree). High scores on the WAS indicate higher levels of job-related anxiety. The WAS demonstrated good internal consistency (α = .94) and acceptable goodness of fit (McCarthy et al., 2016).

Data Analysis
     To address our first research question, we used descriptive statistics to examine the prevalence of training among the participants. We used analysis of covariance (ANCOVA) to detect differences in both suicide assessment self-efficacy (CSAES scores) and workplace anxiety (WAS scores) while controlling for years of school counseling experience between school counselors who were exposed to student suicide and those who were not. We considered exposure to deaths by suicide and exposure to suicide attempts as different types of exposure. Therefore, we performed a total of four ANCOVAs: (a) differences in CSAES scores between school counselors exposed to deaths by suicide and those not exposed, (b) differences in CSAES scores between school counselors exposed to suicide attempts and those not exposed, (c) differences in WAS scores between school counselors exposed to deaths by suicide and those not exposed, and (d) differences in WAS scores between school counselors exposed to suicide attempts and those not exposed. We also used analysis of variance (ANOVA) to determine the difference in years of school counseling experience between those exposed to suicide and those not exposed. To determine the relationship between the number of suicide exposures and counselor suicide assessment self-efficacy, we also completed two partial correlations between the number of exposures to student death by suicide and CSAES scores, and the number of exposures to student suicide attempts and CSAES scores.

Results

     A total of 64 school counselors reported that they experienced a student death by suicide during their school counseling experience (28.3%), with a mean of 2.11 deaths (SD = 2.21). On average, their first suicide death was 6.72 years ago (SD = 5.87), and the most recent suicide death was 3.84 years ago (SD = 3.88). A total of 124 participants experienced a student suicide attempt during their school counseling experience (54.9%), with a mean of 5.36 attempts (SD = 10.54). On average, the first suicide attempt was 5.91 years ago (SD = 6.07), and the most recent attempt was 1.82 years ago (SD = 2.10). Of all 226 school counselors, 195 worked in schools that have crisis plans (86.3%), and 170 worked in schools that have crisis teams (75.2%).

Suicide Training
     Regarding suicide prevention training during their graduate program, 140 (62%) received some training, but 86 (38%) received no training. Regarding crisis intervention training during their graduate program, 142 (63%) received some, but 84 (37%) received none. Regarding suicide postvention, only 87 (38.5%) received some, but 139 (61.5%) received none. The number of postgraduate training hours varied widely for each preparation type. For suicide prevention, training hours averaged 12.20 (SD = 28.61); for crisis intervention, training hours averaged 9.04 (SD = 15.51); and for suicide postvention, training hours averaged 6.45 (SD = 18.14). We removed one participant’s postgraduate training data that was more than 3 standard deviations higher than the mean. In order to better illustrate the distribution of postgraduate training hours, we grouped the number of training hours into four categories: 0 hours, 1–10 hours, 11–50 hours, and more than 50 hours of postgraduate training. Nearly a quarter of the participants (24.3%) received no postgraduate training in suicide prevention, about a third of the participants (30.5%) received no postgraduate training in crisis intervention, and half (50.4%) received no postgraduate training in suicide postvention.

     To further demonstrate the disparity of suicide training, cross-tabulation was performed between graduate training and the number of postgraduate training hours. We reported this data in Table 1. Most surprisingly, 25 school counselors (11.1%) received no graduate training in suicide prevention, nor any postgraduate hours of training in suicide prevention; another 45 (19.9%) received no graduate training and only 10 or fewer hours of postgraduate training in suicide prevention, making nearly 1 in 3 school counselors unprepared to provide suicide prevention services. Crisis intervention fared similarly with 26 school counselors (11.5%) reporting no graduate training and no postgraduate training hours and 41 school counselors (18.1%) reporting no graduate training and 10 or fewer postgraduate training hours. Again, nearly 1 in 3 school counselors were not adequately prepared to provide this important service. Crisis postvention fared the worst, with 80 school counselors (35.4%) reporting that they received no graduate training and no postgraduate training hours, and 46 school counselors (20.4%) reporting no graduate training and fewer than 10 hours of postgraduate training. More than half of the school counselors surveyed are unprepared to face the aftermath of a suicide.

 

Table 1 

Graduate Training and Postgraduate Training Hours

Number of postgraduate training hours Received graduate training Did not receive graduate training
Frequency Percentage Frequency Percentage
Suicide Prevention
   0 hours      30   13.3   25     11.1
   1–10 hours      73   32.3   45     19.9
   11–50 hours      29   12.8   15       6.6
   50 or more hours        8     3.6     1       0.4
Total    140   62.0   86     38.0
Crisis Intervention
   0 hours      43   19.0   26     11.5
   1–10 hours      69   30.5   41     18.1
   11–50 hours      26   11.5   16       7.0
   50 or more hours        4     1.8     1       0.4
Total    142   63.0   84     37.0
Suicide Postvention
   0 hours      34   15.0   80     35.4
   1–10 hours      37   16.4   46     20.4
   11–50 hours      12     5.3   11       4.8
   50 or more hours        4     1.8     2       0.9
Total      87   38.5 139     61.5

 

Suicide Exposure and Suicide Assessment Self-Efficacy
     An ANOVA indicated that school counselors exposed to a student death by suicide had significantly more years of school counseling experience (M = 11.9, SD = 7.87) than school counselors not exposed to a student death by suicide (M = 5.1, SD = 5.56): F(1, 224) = 21.512, p < .001. Controlling for years of school counseling experience as a covariate, an ANCOVA indicated that there was no significant difference between these two groups in General Suicide Assessment, F(1, 223) = .316, p = .574; Assessment of Personal Characteristics, F(1, 223) = .156, p = .694; Suicide Intervention, F(1, 223) = .028, p = .867; or Assessment of Suicide History, F(1, 223) = 1.095, p = .133.

     Similarly, results of an ANOVA indicated that school counselors exposed to student suicide attempts had significantly more years of school counseling experience (M = 8.8, SD = 7.31) than counselors not exposed (M = 4.9, SD = 5.94): F(1, 224) = 8.055, p = .005. Controlling for years of school counseling experience, an ANCOVA indicated significant differences between the two groups in General Suicide Assessment, F(1, 223) = 6.014, p = .015; Assessment of Personal Characteristics, F(1, 223) = 7.140, p = .008; and Suicide Intervention, F(1, 223) = 6.671, p = .010; but not Assessment of Suicide History, F(1, 223) = .763, p = .383. Overall, effect sizes were small.

Number of Exposures and Self-Efficacy
     A partial correlation between the number of suicide exposures and CSAES scores while controlling for years of school counseling experience was not statistically significant. There was no significant relationship between the number of death by suicide exposures and General Suicide Assessment, r(61) = .137, p = .285; Assessment of Suicide History, r(61) = .207, p = .104; Assessment of Personal Characteristics, r(61) = .170, p = .184; or Suicide Intervention, r(61) = .077, p = .551. Likewise, there was also no significant relationships between the number of suicide attempt exposures and General Suicide Assessment, r(121) = −.028, p = .762; Assessment of Suicide History, r(121) = .087, p = .336; Assessment of Personal Characteristics, r(121) = .131, p = .150; or Suicide Intervention, r(121) = .076, p = .401. We reported data regarding the frequency of suicide exposure in Table 2.

Suicide Exposure and Workplace Anxiety
     In WAS scores, an ANCOVA revealed that there were no significant differences between school counselors exposed and not exposed to a student death by suicide when controlling for years of school counseling experience: F(1, 223) = .412, p = .522. Likewise, an ANCOVA revealed that there was no significant difference in WAS scores between school counselors exposed and not exposed to student suicide attempts when controlling for years of school counseling experience: F(1, 223) = .238, p = .626. To further illustrate the relationship between years of school counseling experience and workplace anxiety, a correlation coefficient indicated that these measures were significantly related, r(224) = −.260, p < .001.

Discussion

     Among these school counselors, more than a quarter experienced a student’s death by suicide and over half experienced a student’s suicide attempt. These results are consistent with previous studies indicating that many school counselors will eventually be exposed to a student suicide during their careers (Allen et al., 2002; Gallo, 2018; Schmidt, 2016; Stickl Haugen et al., 2021). Given how common suicide experiences are, school counselors need to be trained to manage suicide-related crises.

Training
     A surprising result in our study was the overall lack of suicide and crisis training reported. As seen in Table 1, nearly 2 in 5 school counselors (38%) reported that they received no suicide prevention training during their graduate education. Additionally, a quarter of the school counselors in this study reported that they received no postgraduate training in suicide prevention, and half reported between 1 and 10 hours. Thus, a sizeable portion of these school counselors were not adequately trained to incorporate suicide prevention programs into their school counseling practice. This finding echoes Gallo (2018), who reported that only 60% of school counselors felt prepared to identify students at risk for suicide. These rates are poor considering that CACREP requires suicide assessment and suicide prevention training as a standard of all counselor education programs (CACREP, 2015). Further, ASCA states that school counselors are responsible for identifying students at risk for suicide and ensuring that suicide prevention programs are in place in schools (ASCA, 2020a). The lack of training reported in this study is particularly troubling given that all of the participants in this study were members of ASCA.

 

Table 2 

Frequency of Student Suicide Exposure

Variable Frequency Percentage
Number of student deaths by suicide (n = 64)
   1 37 57.8
   2 15 23.4
   3–5   8 12.5
   > 5   4   6.3
Years since first death by suicide (n = 64)
   Within 1 year 12 18.8
   1 and 5 years 25 39.0
   6 and 10 years 12 18.8
   More than 10 years 15 23.4
Years since most recent death by suicide (n = 64)
   Within 1 year 23 35.9
   Between 1 and 5 years 26 40.6
   Between 6 and 10 years 11 17.2
   More than 10 years   4   6.3
Number of student suicide attempts (n = 124)
   1 29 23.4
   2 29 23.4
   3–5 44 35.5
   > 5 22 17.7
Years since first student attempt (n = 124)
   Within 1 year 30 24.2
   Between 1 and 5 years 51 41.1
   Between 6 and 10 years 21 17.0
   More than 10 years 22 17.7
Years since most recent attempt (n = 124)
   Within 1 year 84 67.7
   Between 1 and 5 years 33 26.6
   Between 6 and 10 years   6   4.8
   More than 10 years   1   0.8

 

     Crisis intervention training among school counselors also was poor. Comparable to the finding on suicide prevention training, a third of these school counselors reported no graduate training in crisis intervention. Further, more than a third reported that they did not receive postgraduate training hours in crisis intervention, and nearly half received between 1 and 10 hours of postgraduate training. A significant portion of these school counselors were not adequately prepared to respond to crises in their schools. These findings are slightly worse than the findings from 20 years ago when one third of a sample of school counselors reported that they entered the field with no formal crisis intervention coursework (Allen et al., 2002). However, these findings are much better than Wachter Morris and Barrio Minton’s (2012) study in which only 20% of school counselors completed a course in crisis intervention during their master’s degree program. Although preparation has increased, crisis preparation for school counseling students must continue to improve given that school counselors regularly experience crises (Wachter, 2006) and school counseling students often experience crises while still in graduate school completing their practicum or internship (Wachter Morris & Barrio Minton, 2012). The number of school counselors who experienced a student suicide event in the current study also supports the notion that school counselors regularly experience crises.

     Most of these school counselors (61.5%) were not trained in their graduate programs for suicide postvention. Half of the surveyed school counselors reported that they received no postgraduate training hours in suicide postvention, with an additional 38% reported having received between 1 and 10 hours of postgraduate training. These results demonstrate that the vast majority of school counselors are not prepared to respond to a student’s suicidal death. This finding is distressing because school counselors play a vital role in the aftermath of a student suicide (Maples et al., 2005; Substance Abuse and Mental Health Services Administration [SAMHSA], 2016).

Suicide Assessment Self-Efficacy
     Among these counselors, exposure to suicide alone did not make a difference with their suicide assessment self-efficacy or workplace anxiety. Years of school counseling experience appears to have a much more important role in suicide assessment self-efficacy and reduced anxiety than experiencing a student’s death by suicide. This result supports previous studies that found that years of experience has a positive relationship with self-efficacy (Douglas & Wachter Morris, 2015; Kozina et al., 2010; Lent et al., 2003). It also parallels the previous finding that the impact of a client’s suicidal death on a mental health practitioner decreases as the practitioner gains years of experience (McAdams & Foster, 2002). This result is different from Stickl Haugen et al.’s (2021) finding that school counselors who were exposed to a student death had higher levels of suicide assessment self-efficacy than those not exposed. However, Stickl Haugen et al. did not control for years of school counseling experience.

     In contrast, exposure to suicide attempts did make a difference in suicide assessment self-efficacy. Even after controlling for years of experience, counselors with suicide attempt experience reported more efficacy in three of four subscales: General Suicide Assessment, Assessment of Personal Characteristics, and Suicide Intervention. One explanation for this outcome is that a student suicide attempt experience might motivate school counselors to learn about suicide and the risk factors associated. This explanation echoes Wagner et al.’s (2020) finding that counselors found additional training in the aftermath of a suicide very helpful. Many of the school counselors in the current study received no formal training, so it is possible that these experiences helped them fill in knowledge gaps, which in turn increased their self-efficacy. Training increases self-efficacy (Al-Darmaki, 2004; Mirick et al., 2016; Wachter Morris & Barrio Minton, 2012), so it is also possible that this experience worked as an in vivo training for these school counselors, increasing their self-efficacy.

Workplace Anxiety
     Although mental health clinicians often experience symptoms of anxiety in the wake of a student suicide (McAdams & Foster, 2002; Sherba et al., 2019), present results suggest that a student’s death or suicide attempt does not have an impact on school counselors’ workplace anxiety. One explanation for this finding is the relationship between self-efficacy and anxiety. Overall, these school counselors had high self-efficacy scores in each of the four subscales. Previous research indicated that as self-efficacy increases, anxiety decreases (Bodenhorn & Skaggs, 2005; Gorecnzy et al., 2015; Larson et al., 1992). The death by suicide experience might not have impacted the counselors’ anxiety in this study because of their overall high self-efficacy. Another explanation is that the school counselors in this study had on average several years of experience (M = 7.05). Workplace anxiety levels decrease as school counselors spend more time on the job.

Implications
     These results have several implications for school counselors and school counselor educators. First, school counselor educators and school counseling graduate programs should be aware of both the overall disparity of graduate-level suicide and crisis training as well as the benefits that training can provide to future school counselors. Regarding suicide prevention, crisis intervention, and suicide postvention, there are far too many untrained school counselors among the current body of school counselors. School counseling students are a vulnerable group when it comes to suicide assessment self-efficacy (Douglas & Wachter Morris, 2015), so it is imperative to support their professional development. School counseling graduate programs must increase their efforts to adequately train and prepare school counselors for suicide prevention, assessment, and intervention.

     Second, school counselors should prepare to face the probability of having to deal with student suicide attempts and student deaths by suicide. If school counselors do not receive this training during their graduate programs, then they must seek continuing education opportunities that address suicide prevention, crisis intervention, and suicide postvention. Suicide and crisis training increases counselor self-efficacy (Mirick et al., 2016; Wachter Morris & Barrio Minton, 2012), making appropriate preparation vital. Additionally, school counselors could consider clinical supervision as a supplemental layer of support. School counselors receive supervision at much lower rates than their clinical counterparts (Perera-Diltz & Mason, 2012) even though many school counselors desire more supervision (Cook et al., 2012). Given that school counseling–focused supervision can increase self-efficacy (Tang, 2019) and school counselors feel a lack of personal support in the aftermath of a suicide (Christianson & Everall, 2008), school counselors must seek clinical supervision.

     Finally, school counselor educators should consider training efforts that focus specifically on student suicide attempts. In the current study, school counselors exposed to a suicide attempt were more efficacious than school counselors not exposed to a student suicide attempt. Modeling these experiences through the use of specific role plays could help school counseling students feel more confident about their suicide assessment capabilities. Although CACREP does not require counselor education programs to provide suicide postvention training (CACREP, 2015), perhaps standards should adapt to include this important training area. Regardless, programs should also emphasize this training to best prepare school counselors.

Limitations and Suggestions for Future Research
     Some factors limited this study. Although we had a national sample, we surveyed only current members of ASCA. It is possible that school counselors who are not members of ASCA might have responded differently. The study also had a low response rate (4.64%). Those school counselors who responded may be uniquely interested in this area, so the results may not reflect all school counselors. This study also did not limit the types of school counselors who could participate. It is possible that school counselors who work with younger children, such as elementary and primary school counselors, have less familiarity with suicide assessment and intervention than those school counselors who work with older children. The inclusion of these counselors could have affected the results of this study. Finally, this study did not ask participants if they graduated from a CACREP-accredited program. Because suicide prevention and assessment training are required components of CACREP-accredited programs, it is possible that school counselors who graduated from these programs may have different levels of training and self-efficacy than those trained in unaccredited programs.

     For future studies, researchers should consider limiting their samples to specific levels of schooling such as elementary, middle, or high school. This change would help illustrate the nuanced differences among school counselors in different academic environments as well as increase focus on the school counselors who most often work with suicidal students. Future studies should also consider surveying a sample that includes all school counselors, not just ASCA members. Researchers should also differentiate between school counselors who graduated from CACREP-accredited programs and those who did not. Collecting this data would allow researchers to detect if there are any differences in suicide assessment training and self-efficacy between these two groups. Finally, future researchers should consider designing a study that seeks to identify the factors that most impact suicide assessment self-efficacy. Although this study showed that a suicide attempt experience could impact suicide assessment self-efficacy, other factors, such as self-confidence, could have a larger influence.

     Suicide continues to be understudied in school counseling. Even though this study demonstrates the high likelihood that a school counselor will experience a student suicide, school counselors continue to report a lack of preparation in suicide prevention, crisis intervention, and suicide postvention. Although school counselors who experienced a student suicide attempt appeared to gain self-efficacy from their experiences, additional training in counseling suicidal students might help school counselors feel prepared before they face such serious situations. If additional training can help school counselors save students from suicide, then efforts must be made to adequately prepare them.

 

Conflict of Interest and Funding Disclosure
The authors reported no conflict of interest
or funding contributions for the development
of this manuscript.

 

References

Al-Darmaki, F. R. (2004). Counselor training, anxiety, and counseling self-efficacy: Implications for training psychology students from the United Arab Emirates University. Social Behavior and Personality: An International Journal, 32(5), 429–439. https://doi.org/10.2224/sbp.2004.32.5.429

Allen, M., Burt, K., Bryan, E., Carter, D., Orsi, R., & Durkan, L. (2002). School counselors’ preparation for and participation in crisis intervention. Professional School Counseling, 6(2), 96–102.

American School Counselor Association. (2020a). The school counselor and suicide risk assessment. https://schoolcounselor.org/Standards-Positions/Position-Statements/ASCA-Position-Statements/The-School-Counselor-and-Suicide-Risk-Assessment

American School Counselor Association. (2020b). The school counselor and student mental health. https://schoolcounselor.org/Standards-Positions/Position-Statements/ASCA-Position-Statements/The-School-Counselor-and-Student-Mental-Health

Bandura, A. (Ed.). (1986). Social foundations of thought and action: A social cognitive theory. Prentice Hall.

Bodenhorn, N., & Skaggs, G. (2005). Development of the School Counselor Self-Efficacy Scale. Measurement and Evaluation in Counseling and Development, 38(1), 14–28. https://doi.org/10.1080/07481756.2005.11909766

Centers for Disease Control and Prevention. (2021). Injury center: Violence prevention: Suicide prevention. https://webappa.cdc.gov/sasweb/ncipc/leadcause.html

Christianson, C. L., & Everall, R. D. (2008). Constructing bridges of support: School counsellors’ experiences of student suicide. Canadian Journal of Counselling, 42(3), 209–221.

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. https://doi.org/10.1037//0033-2909.112.1.155

Cook, K., Trepal, H., & Somody, C. (2012). Supervision of school counselors: The SAAFT model. Journal of School Counseling, 10(21). https://files.eric.ed.gov/fulltext/EJ981202.pdf

Council for Accreditation of Counseling and Related Educational Programs. (2015). 2016 CACREP standards. http://www.cacrep.org/wp-content/uploads/2017/08/2016-Standards-with-citations.pdf

Douglas, K. A., & Wachter Morris, C. A. (2015). Assessing counselors’ self-efficacy in suicide assessment and intervention. Counseling Outcome Research and Evaluation, 6(1), 58–69. https://doi.org/10.1177/2150137814567471

Finlayson, M., & Graetz Simmonds, J. (2018). Impact of client suicide on psychologists in Australia. Australian Psychologist, 53(1), 23–32. https://doi.org/10.1111/ap.12240

Gallo, L. L. (2018). The relationship between high school counselors’ self-efficacy and conducting suicide risk assessments. Journal of Child and Adolescent Counseling, 4(3), 209–225. https://doi.org/10.1080/23727810.2017.1422646

Gallo, L. L., Rausch, M. A., Beck, M. J., & Porchia, S. (2021). Elementary school counselors’ experiences with suicidal students, Journal of Child and Adolescent Counseling, 7(1), 26–41. https://doi.org/10.1080/23727810.2020.1835419

Gilbride, D. D., Goodrich, K. M., & Luke, M. (2016). The professional peer membership of school counselors and the resources used within their decision-making. The Journal of Counselor Preparation and Supervision, 8(2). https://repository.wcsu.edu/jcps/vol8/iss2/4

Goreczny, A. J., Hamilton, D., Lubinski, L., & Pasquinelli, M. (2015). Exploration of counselor self-efficacy across academic training. The Clinical Supervisor, 34(1), 78–97. https://doi.org/10.1080/07325223.2015.1012916

Greenberg, D., & Shefler, G. (2014). Patient suicide. Israel Journal of Psychiatry & Related Sciences, 51(3), 193–198.

Ivey-Stephenson, A. Z., Demissie, Z., Crosby, A. E., Stone, D. M., Gaylor, E., Wilkins, N., Lowry, R., & Brown, M. (2019). Suicidal ideation and behaviors among high school students — Youth Risk Behavior Survey, United States, 2019. Morbidity and Mortality Weekly Report, Supplement 69(1), 47–55. https://doi.org/10.15585/mmwr.su6901a6

Kozina, K., Grabovari, N., De Stefano, J., & Drapeau, M. (2010). Measuring changes in counselor self-efficacy: Further validation and implications for training and supervision. The Clinical Supervisor, 29(2), 117–127. https://doi.org/10.1080/07325223.2010.517483

Larson, L. M., Suzuki, L. A., Gillespie, K. N., Potenza, M. T., Bechtel, M. A., & Toulouse, A. L. (1992). Development and validation of the Counseling Self-Estimate Inventory. Journal of Counseling Psychology, 39(1), 105–120. https://doi.org/10.1037/0022-0167.39.1.105

Lent, R. W., Hill, C. E., & Hoffman, M. A. (2003). Development and validation of the Counselor Activity Self-Efficacy Scales. Journal of Counseling Psychology, 50(1), 97–108. https://doi.org/10.1037/0022-0167.50.1.97

Maples, M. F., Packman, J., Abney, P., Daugherty, R. F., Casey, J. A., & Pirtle, L. (2005). Suicide by teenagers in middle school: A postvention team approach. Journal of Counseling & Development, 83(4), 397–405. https://doi.org/10.1002/j.1556-6678.2005.tb00361.x

McAdams, C. R., III., & Foster, V. A. (2002). An assessment of resources for counselor coping and recovery in the aftermath of client suicide. Journal of Humanistic Counseling, Education and Development, 41(2), 232–242.

McCarthy, J. M., Trougakos, J. P., & Cheng, B. H. (2016). Are anxious workers less productive workers? It depends on the quality of social exchange. Journal of Applied Psychology, 101(2), 279–291. https://doi.org/10.1037/apl0000044

Mirick, R. G., Bridger, J., McCauley, J., & Berkowitz, L. (2016). Continuing education on suicide assessment and crisis intervention for social workers and other mental health professionals: A follow-up study. Journal of Teaching in Social Work, 36(4), 363–379. https://doi.org/10.1080/08841233.2016.1200171

National Institute of Mental Health. (2019). Mental health information: Statistics: Suicide. https://www.nimh.nih.gov/health/statistics/suicide.shtml

Perera-Diltz, D. M., & Mason, K. L. (2012). A national survey of school counselor supervision practices: Administrative, clinical, peer, and technology mediated supervision. Journal of School Counseling, 10, 1–34. https://files.eric.ed.gov/fulltext/EJ978860.pdf

Substance Abuse and Mental Health Services Administration. (2016). Preventing suicide: A toolkit for high school. Center for Mental Health Services, Substance Abuse and Mental Health Services Administration. https://store.samhsa.gov/product/Preventing-Suicide-A-Toolkit-for-High-Schools/SMA12-4669

Schmidt, R. C. (2016). Mental health practitioners’ perceived levels of preparedness, levels of confidence and methods used in the assessment of youth suicide risk. The Professional Counselor, 6(1), 76–88. https://doi.org/10.15241/rs.6.1.76

Sherba, R. T., Linley, J. V., Coxe, K. A., & Gersper, B. E. (2019). Impact of client suicide on social workers and counselors. Social Work in Mental Health, 17(3), 279–301. https://doi.org/10.1080/15332985.2018.1550028

Solomonson, L. L., & Killam, W. (2013). A national study on crisis intervention: Are school counselors prepared to respond? Ideas and Research You Can Use: VISTAS 2013. https://www.counseling.org/docs/default-source/vistas/a-national-study-on-crisis-intervention.pdf?sfvrsn=b3b9af05_11

Springer, S., Paone, C. H., Colucci, J., & Moss, L. J. (2020). Addressing suicidality: Examining preservice school counselors’ perceptions of their training experiences. Journal of Child and Adolescent Counseling, 6(1), 18–36. https://doi.org/10.1080/23727810.2018.1556990

Stickl Haugen, J., Waalkes, P. L., & Lambie, G. W. (2021). A national survey of school counselors’ experiences with student death by suicide. Professional School Counseling, 25(1), 1–11. https://doi.org/10.1177/2156759X21993804

Tang, A. (2019). The impact of school counseling supervision on practicing school counselors’ self-efficacy in building a comprehensive school counseling program. Professional School Counseling, 23(1), 1–11. https://doi.org/10.1177/2156759X20947723

Thomyangkoon, P., & Leenars, A., (2008). Impact of death by suicide of patients on Thai psychiatrists. Suicide & Life-Threatening Behavior, 38(6), 728–740. https://doi.org/3994/10.1521/suli.2008.38.6.728

Wachter, C. A. (2006). Crisis in the schools: Crisis, crisis intervention training, and school counselor burnout (Publication No. 3221458). [Doctoral dissertation, University of North Carolina at Greensboro]. ProQuest Dissertations Publishing.

Wachter Morris, C. A., & Barrio Minton, C. A. (2012). Crisis in the curriculum? New counselors’ crisis preparation, experiences, and self-efficacy. Counselor Education and Supervision, 51(4), 256–269. https://doi.org/10.1002/j.1556-6978.2012.00019.x

Wagner, N. J., Grunhaus, C. M. L., & Tuazon, V. E. (2020). Agency responses to counselor survivors of client suicide. The Professional Counselor, 10(2), 251–265. https://doi.org/10.15241/njw.10.2.251

 

Alexander T. Becnel, PhD, NCC, LPC, is a doctoral candidate at the University of Holy Cross. Lillian Range, PhD, is a professor at the University of Holy Cross. Theodore P. Remley, Jr., JD, PhD, NCC, is a professor at the University of Holy Cross. Correspondence may be addressed to Alexander T. Becnel, 4123 Woodland Drive, New Orleans, LA 70131, abecnel2@uhcno.edu.

Making Choices and Reducing Risk (MCARR): School Counseling Primary Prevention of Substance Use

Louisa L. Foss-Kelly, Margaret M. Generali, Michael J. Crowley

 

The consequences of adolescent drug and alcohol use may be serious and far-reaching, forecasting problematic use or addictive behaviors into adulthood. School counselors are particularly well suited to understand the needs of the school community and to seamlessly deliver sustainable substance use prevention. This pilot study with 46 ninth-grade students investigates the impact of the Making Choices and Reducing Risk (MCARR) program, a drug and alcohol use prevention program for the school setting. The MCARR curriculum addresses general knowledge of substances and their related risks, methods for evaluating risk, and skills for avoiding or coping with drug and alcohol use. Using a motivational interviewing framework, MCARR empowers students to choose freely how they wish to behave in relation to drugs and alcohol and to contribute to the health of others in the school community. The authors hypothesized that the implementation of the MCARR curriculum would influence student attitudes, knowledge, and use of substances. Results suggest that the MCARR had a beneficial impact on student attitudes and knowledge. Further, no appreciable increases in substance use during the program were observed. Initial results point to the promise of program feasibility and further research with larger samples including assessment of longitudinal impact.

Keywords: MCARR, school counselors, drug and alcohol use, substance use prevention, motivational interviewing

Adolescent substance use continues to wreak havoc in the United States, resulting in tragic consequences for adolescents, their families, and communities. Although some substances of abuse and modes of delivery have faded in prominence, others have taken their place. For instance, data from the National Institute on Drug Abuse’s Monitoring the Future Survey reflect an alarming rise in e-cigarette use, which may predict an easier transition to combustible cigarettes and cause serious lung injuries (Johnston et al., 2020; Singh et al., 2020). Use of illicit drugs among adolescents is down, yet cannabis use has increased among younger adolescents to levels that the Food and Drug Administration has described as epidemic (Johnston et al., 2020; Yu et al., 2020). Reports have shown a rise in 30-day marijuana vaping, a common metric for assessing recent use, which has doubled or tripled among eighth, 10th, and 12th graders (Johnston et al., 2020). Concerns remain that early initiation of drug use may further fuel the United States’ ongoing opioid epidemic (D. A. Clark et al., 2020; D. J. Clark & Schumacher, 2017). Historically, alcohol has been the most prominent substance of abuse among adolescents (Substance Abuse and Mental Health Services Administration [SAMHSA], 2018); however, binge alcohol use, defined as more than five drinks on a single occasion, has been declining since the 1970s (Johnston et al., 2020). Regardless, alcohol use and its related risks, such as homicide, suicide, and motor vehicle crashes, continue to be a significant problem for youth (Hadland, 2019; Lee et al., 2018).

Among adolescent risk-taking behaviors, substance use is particularly concerning because of potential impacts on the developing brain (Jordan & Andersen, 2017; Renard et al., 2016). Adolescence offers a “window of opportunity” for the establishment of neural pathways that may protect against the development of drug and alcohol use problems (Whyte et al., 2018). Brain structure may impact function in the areas of working memory, attention, and cognitive and social skill development in adolescence (Fuhrmann et al., 2015; Randolph et al., 2013). The developmental tasks of adolescence, such as identity formation, social connectedness, and patterns of interpersonal relatedness, may also be negatively impacted by substance use (Finkeldey et al., 2020; Lee et al., 2018). Incidents of adolescent intoxication may lead to early sexual debut, high-risk sexual activity, physical altercations, or other regrettable behavior (Clark et al., 2020). Moreover, drug use has consistently been linked to depression, anxiety, and poor school performance (e.g., D’Amico et al., 2016; M. S. Dunbar et al., 2017; Ohannessian, 2014). Suicidality and non-suicidal self-injury have also been associated with substance use (e.g., Carretta et al., 2018; Gobbi et al., 2019). In a study of 4,800 adolescents, illicit drug use was more strongly associated with suicidal behavior than other high-risk behaviors (Ammerman et al., 2018). The risks of adolescent drug and other substance use are sweeping, significant, and important for informing prevention efforts.

Early identification and intervention for adolescents is critical for preventing later substance use disorders and staving off this public health problem (Levy et al., 2016). In 2011, of young adults aged 18–30 admitted for substance use disorder treatment, 74% initiated use at age 17 or younger (SAMHSA, 2014). Research suggests that the increase of lifetime problem alcohol use increases by a factor of four when adolescents drink prior to age 15, compared to those who drink prior to age 20 (Kuperman et al., 2013). The current literature identifies a clear relationship between early alcohol and marijuana use and future patterns of prescription opioid abuse (B. R. Harris, 2016). A recent study of over 1,300 adolescents found that those who screened positive for highest risk in a simple 2-question assessment were shown to have a higher number of drinking days and to be at higher risk for alcohol use disorder 3 years later (Linakis, 2019).

School Personnel as Frontline Responders to Adolescent Substance Use Risk
     School personnel and the school community have important roles to play in promoting mental health and preventing substance use among students (E. T. Dunbar et al., 2019; Eschenbeck et al., 2019; Lintz et al., 2019). School-based services may range from prevention to treatment, with efficacious results demonstrated using motivational interviewing and other evidence-based approaches (Winters et al., 2012). A number of prevention programs implemented by school leaders or trained youth facilitators have demonstrated efficacy, including Youth to Youth (Wade-Mdivanian et al., 2016), an empowerment-focused, positive youth development approach for ages 13–17 in a 4-day summer conference format. Another is Refuse, Remove, Reasons (RRR; Mogro-Wilson et al., 2017), a 5-session curriculum for ages 13–17 delivered in health classrooms by clinical service providers from the community. The RRR involves caregivers and uniquely focuses on mutual aid between students.

The keepin’ it R.E.A.L. program (Hecht et al., 2003), designed for younger adolescents, Grades 6–9, involves urban or rural culturally grounded curricula focused on social norms and networking to make behavior change and has been adopted by the national Drug Abuse Resistance Education (D.A.R.E.) program. The Life Skills Training program (Botvin & Griffin, 2004), designed for middle school students, relies on cognitive behavioral principles to help students develop self-management and social skills. Also designed for middle school students, the All Stars curriculum (McNeal et al., 2004), emphasizes social skills, social norms, and debunking inaccurate beliefs about adolescent substance use, violence, and early sexual debut. All Stars uses 22 sessions, with some groups outside of class and in a one-on-one meeting format. Each of the programs described here has contributed to the efforts to prevent drug and alcohol abuse among young people; however, none of these offer a school counselor–implemented classroom guidance curriculum specifically designed for middle adolescence, including students aged 14–17 years.

The Role of School Counselors
     As stable members of the school community, school counselors hold knowledge of their students and the culture of the school and surrounding community, allowing for a seamless response to student needs. The schoolwide multi-tiered system of supports (MTSS) model used to prevent and respond to academic and behavioral difficulties in children provides a structure for delivering prevention in comprehensive school counseling services (Pullen et al., 2019). MTSS utilizes student assessment for the development of tiers of intervention or support to address identified student needs in comprehensive school counseling services (Ziomek-Daigle, 2016). MTSS defines a Tier 1 intervention as primary prevention and includes evidence-based programming for all students. These interventions are used to support student knowledge, skill acquisition, and healthy decision-making and are appropriate for addressing conflict resolution, nutrition and health, and substance use.

The comprehensive school counseling model provides a sound means for delivering substance use prevention interventions. Classroom guidance education, a key responsibility of school counselors, provides an ideal opportunity to implement primary prevention of substance use for all students. However, to date no comprehensive substance use prevention program has focused specifically on delivery by school counselors.

The MCARR Program
     Making Choices and Reducing Risk (MCARR) is a school counseling–based program for addressing substance use among adolescents. MCARR utilizes a structured classroom educational program. The program is implemented throughout the academic year as a Tier 1 schoolwide approach with ninth graders in a classroom setting (Ziomek-Daigle, 2016). The program involves meeting once per month to deliver psychoeducation and to engage in reflective and team-oriented learning experiences as part of a health education or related class. MCARR is a naturally sustainable intervention based on school community concepts and highly effective adolescent counseling interventions, described below.

Motivational Interviewing
     The MCARR is based on motivational interviewing (MI) and risk reduction principles, both of which are well-established approaches in clinical settings (e.g., Cushing et al., 2014; DiClemente et al., 2017) and in schools (Rollnick et al., 2016). MI focuses primarily on the decision-making process, including resolving ambivalence about change and respecting the client’s autonomy to make their own choices (Miller & Rollnick, 2013). MI has been described as more of a philosophy or method of communication rather than a set of specific techniques. Alongside the Rogerian value of respect, MI offers a form of freedom by providing a validating, encouraging, and safe space to explore one’s identity and learn to make adaptive life choices. Other MI concepts include developing and amplifying discrepancies between one’s current behavior and desired behavior. MI also calls counselors to “roll with resistance” when clients verbalize a lack of desire to change or refusal to change or make healthy choices (Miller & Rollnick, 2013). Rolling with resistance is particularly helpful for adults working with adolescents familiar with authority figure conflict. These adults may quickly slide into an authoritarian tug-of-war to win the adolescent over to behaving in a certain way, inadvertently causing even more resistance. MI may be ideal for supporting adolescents who yearn for personal freedom and the right to make their own choices (Naar-King & Suarez, 2011).

Risk Reduction
     Risk reduction is a widely used public health concept in drug and alcohol treatment, especially in terms of relapse prevention (Hendershot et al., 2011). Risk reduction is not directed at abstinence—rather it aims to help those who use alcohol or drugs to engage in use at a lower risk level. The concept of risk reduction is a response to data suggesting that abstinence-only approaches may not be effective for adolescents (Blackman et al., 2018). There is arguably no acceptably low risk level for adolescents. However, when used as a complement to MI, risk reduction ideas can be used to demonstrate that the ultimate decision to use can only be made by the adolescent. Instead of fighting against the developmental task of individuation, this approach could allow adolescents to freely choose whether or not to use and begin to consider future levels of substance use as an adult.

Evaluating Consequences: The CRAFFT
     The CRAFFT (Car, Relax, Alone, Forget, Friends, and Trouble) is a simple screening instrument incorporated into MCARR to assess substance use consequences and identify problem substance use (Knight, 2016; Knight et al., 1999). The CRAFFT 2.0 instrument is composed of six questions related to use of drugs and alcohol in the prior year, in various situations such as use in motor vehicles, use to relax or when alone, problems with memory related to intoxication, problems with friends, and violations resulting in trouble with school or legal entities. The MCARR curriculum encourages students to consider substance use situations presented on the CRAFFT not to screen peers, but rather as “red flags” to inform healthier decision-making and action.

Neurobiological Education for Risk Literacy
     In the MCARR program, students learn about the neurological and physiological impacts of substance abuse in adolescence, including neural plasticity and the functional and structural changes that may permanently affect working memory, attention, and other processes in the developing brain (Fuhrmann et al., 2015). A meta-analytic study by Day and colleagues (2015) suggested that alcohol use can lead to problems with executive functioning, including attention and mental flexibility, as well as mechanisms of self-control. Some drinking and drug use behaviors may be associated with the development of mood and anxiety-related problems (Pedrelli et al., 2016). In addition to this information, MCARR also presents the physiological impact of alcohol and specific drugs, including fatigue, muscle weakness, and damage to organs. MCARR applies these concepts to the daily routine of an adolescent, including specific examples of how these changes may impact athletic performance, academic performance, or social interactions. This information may inform decision-making and contribute to risk literacy, or the ability to consider, interpret, and act on accurate information to make decisions about whether one will engage in substance use (Nagy et al., 2017).

Refusal Skills
     Adolescent expectations about the positive or negative effects of substance use may be an important factor in prevention and refusal skills (Lee et al., 2020). For instance, cannabis use is less likely when adolescents perceive it as riskier (Miech et al., 2017). Knowledge about the various impacts of drugs and alcohol have been correlated with the development of beliefs about use, including social aspects, physiological aspects, and general expectancies of use (Zucker et al., 2008). Attitudes about drugs and alcohol and their risks appear to be an important part of effective prevention efforts (Miech et al., 2017; Stephens et al., 2009). For these reasons, the development of healthy attitudes about drug and alcohol use becomes an important life task (Schulenberg & Maggs, 2002).

Peer Influence
     Understanding the power of peer influence in adolescent substance use (Henneberger et al., 2019), the MCARR approach also employs the social context of the caring school community to support primary prevention efforts and promote overall student wellness. It is well documented that social pressures are particularly heightened during adolescence, when the desire to affiliate with peers and find acceptance within a peer group is highly valued (Trucco et al., 2011). During the adolescent developmental period, decision-making reference points are more likely to shift away from family and important adults and toward peer groups. According to normative social behavior theory, perceptions that most of one’s peers use drugs and alcohol may increase the likelihood of one’s own substance use (Rimal & Real, 2005). Students often overestimate the frequency and level of use of alcohol and other substances by their peers, resulting in increased likelihood of earlier experimentation (Prestwich et al., 2016). Community-building efforts have the potential to promote a climate wherein students are aware of the risks related to substance use and support positive decision-making among their peers. In this way, students can learn to advocate for others as well as themselves.

Coping and Self-Regulation
     The MCARR program also emphasizes coping and emotion regulation skills, both of which are associated with decreased risk-taking behaviors among adolescents (Wills et al., 2016). Skills for coping with stress have been shown to impact future substance use (Zucker et al., 2008). The development of coping skills and substance use knowledge is combined to support informed choices and reduced risk throughout adolescence. Additionally, the MCARR curriculum includes skill-building instruction and practice on drug refusal skills, as these skills have been shown to increase self-efficacy for resisting use (Karatay & Baş, 2017). To support decision-making, students are taught how to analyze and cope with the increasing prevalence of marketing messages in video and social media. These media messages have been shown to significantly impact adolescent perceptions of substance use, resulting in calls for educational interventions to help students cope with messages that encourage substance use (Romer & Moreno, 2017). Ideally, group norms that encourage emotional well-being and self-care may facilitate a student’s receptivity to healthy messages about the risks of drug and alcohol use and may help students make choices accordingly.

Purpose of the Present Study
     The purpose of this pilot study was to examine the feasibility of a primary prevention intervention delivered by school counselors targeting decision-making and attitudes around substance use in a Northeastern urban high school with ninth-grade students. We posed the following questions: First, does the MCARR program impact student attitudes and knowledge related to substance use, including perceived risk and readiness to change? Second, does the MCARR program impact substance use behaviors? Using research and literature cited above, we hypothesized that the implementation of the MCARR curriculum would influence student attitudes, knowledge, and use of substances as measured by paired-samples t-tests of data gathered prior to and following implementation of the curriculum.

Method

Participants and Sampling Procedures
     This study was approved by both the school district and researchers’ university IRB. Participants of this study were 46 ninth-grade students at an urban high school (54.2% female, 45.8% male), ages 13–15 years (M = 14.13, SD = .57), who provided responses before and after participating in the MCARR program. The ethnic background of participants was as follows: 37% Hispanic or Latino, 30.4% African American, 21.7% Caucasian, 6.5% Mixed ethnic background, 2.2% Asian, and 2.2% preferred not to say.

The families of all ninth graders were notified of the MCARR lessons being delivered within their child’s dramatic arts classroom. The MCARR program and study procedures were described in the informed consent letter to parents. Students gave assent to participate by signing an assent form that was both read aloud and provided to each student. Data collection via a survey was explained along with the risks and benefits of study participation. Although this curriculum was approved for all ninth graders at the school, parents were given the option to opt their child out of the survey portion of this lesson. The study survey was given prior to their first lesson, then repeated following their ninth lesson. None of the students or families opted out of the survey portion of the MCARR program.

Measure
     The survey we constructed included non-identifying demographic items, 20 Likert-type scale items, and two open-ended questions. The 20 Likert-type scale items included items from the following subscales: Substance Use Days, CRAFFT Items, Readiness to Change, and Attitudes Regarding Riskiness of Substance Use. The following sources of material informed the development of our MCARR survey: the Youth Risk Behavior Surveillance System (Kann et al., 2018); the CRAFFT 2.0 survey (Knight, 2016); Screening, Brief Intervention, and Referral to Treatment (SBIRT) screening and interviewing (S. K. Harris et al., 2014); and the National Institute on Alcohol Abuse and Alcoholism guidelines (NIAAA; 2011).

Substance use was measured by asking participants to retrospectively estimate their drug or alcohol use in the prior 30 days, a time period consistent with national surveys of youth substance use (Zapolski et al., 2017). Then participants completed six items from the CRAFFT 2.0 survey (Knight, 2016). These questions used a yes/no format, each question relating to a letter in the CRAFFT acronym describing situations or circumstances involving drug or alcohol use. Using the 30-day interval, our survey asked participants the following CRAFFT questions: “Have you ever ridden in a CAR driven by someone (including yourself) who was ‘high’ or had been using alcohol or drugs?,” “Do you ever use alcohol or drugs to RELAX, feel better about yourself or fit in?,” “Do you ever use alcohol or drugs while you are by yourself, or ALONE?,” “Do you ever FORGET things you did while using alcohol or drugs?,” “Do your FAMILY or FRIENDS ever tell you that you should cut down on your drinking or drug use?,” and “Have you ever gotten into TROUBLE while you were using alcohol or drugs?” In general, higher scores indicate higher risk for a substance use disorder (Knight, 2016; Knight et al., 2002). The CRAFFT can be used as a self-report screening tool and has been shown to have strong psychometric properties (e.g., Dhalla et al., 2011; Levy et al., 2004). In an early study of 538 participants, the CRAFFT demonstrated sensitivity, specificity, and predictive value in identifying adolescents with substance use problems (Knight et al., 2002). Further, in a study of 4,753 participants, the CRAFFT 2.0 demonstrated strong concurrent and predictive validity (Shenoi et al., 2019).

Readiness to Change items were informed by components of the brief negotiation interview in SBIRT (D’Onofrio et al., 2005; Whittle et al., 2015) and substance use attitudes items were adapted from the Youth Risk Behavior Surveillance System (Kann et al., 2018). Knowledge items were developed based on NIAAA guidelines and norms, such as alcohol volume in various types of beverages and adult low-risk use levels (Alcohol Research Editorial Staff, 2018). Item composition of the four subscales is presented in the supplementary materials (Appendix A).

Procedure
     The MCARR is intended to be a universal intervention for students in at least one grade, with ninth graders as the primary target population. MCARR consists of nine learning modules each lasting 1.5 hours, offered once per month in a classroom with 15–20 students in each meeting. The nine modules are: 1) Orientation to the MCARR Program and Community Building, 2) Personal Coping, 3) Attitudes and Messages About Use, 4) Alcohol, 5) Community Partners, 6) Assumptions and Low-Risk Limits, 7) Cannabis, Nicotine, and E-Cigarettes, 8) Opioids and Cocaine, and 9) Review: Decisions. Each module, including the learning objectives and a summary of activities, is provided in Appendix B.

The education curriculum (MCARR) was delivered each month within the dramatic arts classroom at the school. School counselors delivered the curriculum via overhead slides and brief videos, with related reflection and application activities throughout. Each lesson closed with an exit slip used to support and monitor lessons learned that day. The exit slip helped remind students of key concepts in the lesson and gave counselors a sense of the relevance of the lesson and the content retained. In this way, the school counselor could address confusing concepts in the following lesson as needed and continuously improve the program. The survey was administered via computer immediately preceding the presentation of the first module and at the conclusion of the last module.

Results

Descriptive statistics for major study variables are provided in Table 1. Data reported by participants on each of the four scales used in the study were evaluated by way of paired-samples t-tests. The first research question explored the impact of the MCARR curriculum on substance use attitudes and knowledge. We observed significant increase in readiness to change, t(45) = −3.70, p < .001, and a significant increase in knowledge and perception about the riskiness of substance use, t(45) = −4.91, p < .001. The second research question compared student self-reported substance use pre- and post-intervention. Notably, we observed no significant change in substance use days. The absence of significant increases in use may be important during an adolescent period when experimentation with substance use typically increases. However, CRAFFT scores did increase from pre- to post-intervention: t(45) = −2.41, p = .020. We further explored significant increases in the CRAFFT at both the participant level and the item level (see Table 2). Individual CRAFFT items data revealed clear differences in relative impact of each item, with the motor vehicle item “Have you ever ridden in a CAR driven by someone (including yourself) who was ‘high’ or had been using alcohol or drugs?” presenting prominently with the greatest increase in student endorsement (3 at pre- to 12 at post-intervention). The Relax item remained the same (2 at both pre- and post). There was an increase in reported use of substances while Alone (1 to 4), and a slight increase in scores related to Family/Friends (0 to 1), Forgetting (0 to 3), and Trouble (0 to 1). During the course of the study, students with a total CRAFFT items score of 2 or higher, the established CRAFFT 2.0 threshold for suggesting higher risk (Shenoi et al., 2019), rose from 1 participant to 7 participants (N = 46). These results appear to be linked to the motor vehicle item in the CRAFFT, which could point to a potential refinement of MCARR, discussed below. The design of this study does not permit these patterns to be conclusively linked with participation in the MCARR program; however, our data provide promising preliminary evidence for the effectiveness of the MCARR curriculum for targeting attitudes around substance use and readiness for behavior change.

Discussion

In this pilot study, we show the feasibility of the MCARR program delivered by school counselors to ninth-grade students in an urban setting. This primary prevention curriculum was particularly well-suited for universal implementation in the classroom setting. Promising results included significant increases in healthy attitudes about substances, which are important in helping prevent future substance use problems (Nagy et al., 2017). Pre- and post-CRAFFT data showed a slight increase in risky use, with a clear increase in students riding in a car with a person who had been using substances. It should be noted that participants spending more time with others who use while in motor vehicles, not the student’s own use per se, appears to have contributed substantially to the rise in overall CRAFFT scores in this particular study. In fact, because we did not see an appreciable change in self-reported substance use from pre- to post-intervention, which remained low, we believe the uptick in the CRAFFT motor vehicle item does not reflect the adolescent reporting on their own use in a car, but rather an increase in riding with others who are under the influence of substances. This finding has significance for future curriculum development, which may increase content related to managing situations involving substance use and motor vehicles.


Table 1

Means and Standard Deviations of Major Study Variables

  Pre-Assessment Post-Assessment  
  Mean SD Mean SD t p
Substance Use Days     0.58 3.04 0.59 2.21  0.09   .930
CRAFFT Items     0.15 0.52 0.52 1.03 −2.41   .020
Readiness to Change   12.10 7.84     16.50 7.85 −3.70 < .001
Attitudes Regarding Riskiness of Substance Use   14.33 2.87     16.65 2.80 −4.91 < .001

Note. Maximum score for Substance Use Days: 30, CRAFFT Items: 6, Readiness to Change: 24, and Attitudes
Regarding Riskiness of Substance Use: 18. No significant changes were found in substance use days.

Significance was also found in increased readiness for change among those reporting current substance use, perhaps reflecting the utility of offering decisional freedom during a time associated with increasing ambivalence about the choice to initiate drug and alcohol use (Hohman et al., 2014). We did not observe appreciable increases in substance use or abuse across the length of the program, which is noteworthy, as the adolescent years may commonly be a time of increasing substance experimentation and use (Johnston et al., 2020).

Adolescent drug and alcohol use continues to cause ongoing, intractable public health problems (Whyte et al., 2018). As established members of the school community network, school counselors are ideally positioned to play an important role in preventing and reducing drug and alcohol use and other mental health problems among adolescents (Fisher & Harrison, 2018; Haskins, 2012). Their unique integrated role in the school and in the students’ school life offers background knowledge of student experience, positive relational influence, and access to school and community resources when support is needed. Moreover, a program such as MCARR, which aligns with the roles of school personnel such as the school counselor, could lead to a sustainable approach for mitigating teen substance use. The spirit of MI, allowing individuals to make life choices freely, is a sound approach to counseling adolescents and lends itself well to school counseling interventions and changes in attitudes (Naar-King & Suarez, 2011). Further, the MCARR curriculum may increase general knowledge of drugs and alcohol and related risk literacy, which likely contributes to delaying drug and alcohol use until adulthood (Kuperman et al., 2013). Consistent with prior research, the MCARR may effectively use student connections and interaction to teach skills for coping with challenges related to drug and alcohol use (Henneberger et al., 2019).

Table 2

Pre- and Post-MCARR CRAFFT Endorsement by Item and Total Score

CRAFFT Individual Items Endorsed   Pre Post
1. Have you ever ridden in a car driven by someone (including yourself) who
was “high” or had been using alcohol or drugs?
no 43 34
yes 3 12
2. Do you ever use alcohol or drugs to relax, feel better about yourself, or fit in? no 44 44
yes 2 2
3. Do you ever use alcohol or drugs while you are by yourself, or alone? no 45 42
yes 1 4
4. Do you ever forget things you did while using alcohol or drugs?

 

no 46 43
yes 0 3
5. Do your family or friends ever tell you that you should cut down on your
drinking or drug use?
no 46 45
yes 0 1
6. Have you ever gotten into trouble while using alcohol or drugs? no 46 45
  yes 0 1
Student CRAFFT Total Scoresa Score Pre Post
  0 41 33
  1 4 6
  2 0 5
Number of items endorsed “yes” 3 1 1
  4 0 0
  5 0 1
  6 0 0

a This portion of the table shows the number of students endorsing 0–6 items on the CRAFFT survey. Students with higher-risk scores (total score ≥ 2) changed from 1 student at pre to 7 students at post.

 

Study Limitations
     Although an important first step in developing and evaluating a primary prevention curriculum for school personnel, this pilot study has limitations worth noting. First, this is an open trial. Thus, without a matched control group or an active control group in the context of an experiment, we cannot make strong causal inferences about the impact of our intervention on youth attitudes and readiness for change around substance use. Second, this was a small sample study. A larger sample would more strongly speak to the robustness of the results we report here. Third, the incorporation of more comprehensive substance use instruments into the survey would improve the strength of inferences about the impact of MCARR on substance use behavior. Fourth, the assessment of readiness to change was only applicable to students self-reporting substance use. Future studies may focus on readiness to change among all participants, regardless of substance use self-assessment. In addition, in spite of the specificity of the curriculum, it is possible that the methods of content delivery and program facilitation were impacted by the personal style or characteristics unique to the instructor. These factors could be measured in future work. Lastly, we did not include a follow-up assessment that could speak to the robustness of our observed effects and longer term impact on substance use as students move through their high school years and beyond.

Future Directions
     Research is needed to establish evidence to support school interventions such as the MCARR. Future research may support the efficacy of the MCARR through measures of substance use knowledge, risk assessment evaluation competencies, and attitudes about substance use. Longitudinal studies may explore how the MCARR impacts students’ future drug and alcohol use, and research should also explore the relevance of the MCARR for students of different ages, in a variety of school settings, across a diverse range of communities. Future research should focus on the feasibility of this curriculum in online learning environments, including possible delivery adaptations and content considerations. Collaboration with school staff, health educators, and other members of the school community could improve any impact offered by the MCARR. Using school counselors, the MCARR curriculum offers promise in mitigating drug and alcohol use, heading off problematic use, and encouraging students to intentionally reflect on their choices. For the longer term, we hope that a program such as the MCARR could be sustainable, drawing on the roles that counselors already fill within schools and with bridges to counselor education programs, where new school counselors enter the workforce with the MCARR program on board. Problematic substance use continues to plague our youth. We hope that the MCARR, realized through school counselors and other school professionals, can address an important gap via a systemic approach to mitigating youth substance use risk. For the future, we are planning a larger, multi-school study that addresses the limitations just noted and a deeper phenotyping of student characteristics and assessment of processes that may affect the potency of our program (e.g., student relationship with school, peer and parental attitudes about substance use).

In conclusion, with MCARR we provide the profession with a promising primary preventive school-based approach for reducing adolescent substance use behaviors. MCARR is the first program designed specifically to harness the professional strengths of school counselors, with findings in an open trial suggesting impacts on student attitudes and knowledge related to substance use including perceived risk and readiness to change, but without appreciable increases in substance use during a high-risk period. Future work in a randomized trial and follow-up across the high school years will further evaluate MCARR impacts and sustainability in the school milieu.

 

Conflict of Interest and Funding Disclosure
The authors reported no conflict of interest
or funding contributions for the development
of this manuscript.

References

Alcohol Research Editorial Staff. (2018). Drinking patterns and their definitions. Alcohol Research, 39(1), 17–18.

Ammerman, B. A., Steinberg, L., & McCloskey, M. S. (2018). Risk-taking behavior and suicidality: The unique role of adolescent drug use. Journal of Clinical Child & Adolescent Psychology, 47(1), 131–141. https://doi.org/10.1080/15374416.2016.1220313

Blackman, S., Bradley, R., Fagg, M., & Hickmott, N. (2018). Towards ‘sensible’ drug information: Critically exploring drug intersectionalities, ‘Just Say No,’ normalisation and harm reduction. Drugs: Education, Prevention and Policy, 25(4), 320–328. https://doi.org/10.1080/09687637.2017.1397100

Botvin, G. J., & Griffin, K. W. (2004). Life skills training: Empirical findings and future directions. The Journal of Primary Prevention, 25, 211–232. https://doi.org/10.1023/B:JOPP.0000042391.58573.5b

Carretta, C. M., Burgess, A. W., Dowdell, E. B., & Caldwell, B. A. (2018). Adolescent suicide cases: Toxicology reports and prescription drugs. The Journal for Nurse Practitioners, 14(7), 552–558.
https://doi.org/10.1016/j.nurpra.2018.05.010

Clark, D. A., Donnellan, M. B., Durbin, C. E., Nuttall, A. K., Hicks, B. M, & Robins, R. W. (2020). Sex, drugs, and early emerging risk: Examining the association between sexual debut and substance use across adolescence. PLoS ONE, 15(2). https://doi.org/10.1371/journal.pone.0228432

Clark, D. J., & Schumacher, M. A. (2017). America’s opioid epidemic: Supply and demand considerations. Anesthesia & Analgesia, 125(5), 1667–1674. https://doi.org/10.1213/ANE.0000000000002388

Cushing, C. C., Jensen, C. D., Miller, M. B., & Leffingwell, T. R. (2014). Meta-analysis of motivational interviewing for adolescent health behavior: Efficacy beyond substance use. Journal of Consulting and Clinical Psychology, 82(6), 1212–1218. https://doi.org/10.1037/a0036912

D’Amico, E. J., Tucker, J. S., Miles, J. N. V., Ewing, B. A., Shih, R. A., & Pedersen, E. R. (2016). Alcohol and marijuana use trajectories in a diverse longitudinal sample of adolescents: Examining use patterns from age 11 to 17 years. Addiction, 111(10), 1825–1835. https://doi.org/10.1111/add.13442

Day, A. M., Kahler, C. W., Ahern, D. C., & Clark, U. S. (2015). Executive functioning in alcohol use studies: A brief review of findings and challenges in assessment. Current Drug Abuse Reviews, 8(1), 26–40. https://doi.org/10.2174/1874473708666150416110515

Dhalla, S., Zumbo, B. D., & Poole, G. (2011). A review of the psychometric properties of the CRAFFT instrument: 1999–2010. Current Drug Abuse Reviews, 4(1), 57–64. https://doi.org/10.2174/1874473711104010057

DiClemente, C. C., Corno, C. M., Graydon, M. M., Wiprovnick, A. E., & Knoblach, D. J. (2017). Motivational interviewing, enhancement, and brief interventions over the last decade: A review of reviews of efficacy and effectiveness. Psychology of Addictive Behaviors, 31(8), 862–887. https://doi.org/10.1037/adb0000318

D’Onofrio, G., Pantalon, M. V., Degutis, L. C., Fiellin, D. A., & O’Connor, P. G. (2005). Development and implementation of an emergency practitioner-performed brief intervention for hazardous and harmful drinkers in the emergency department. Academic Emergency Medicine, 12(3), 249–256.
https://doi.org/10.1197/j.aem.2004.10.021

Dunbar, E. T., Jr., Nelson, M. D., & Tarabochia, D. S. (2019). Substance use disorders: What school counselors should know. Journal of School Counseling, 17(21), 1–29.

Dunbar, M. S., Tucker, J. S., Ewing, B. A., Pedersen, E. R., Miles, J. N. V., Shih, R. A., & D’Amico, E. J. (2017). Frequency of e-cigarette use, health status, and risk and protective health behaviors in adolescents. Journal of Addiction Medicine, 11(1), 55–62. https://doi.org/10.1097/ADM.0000000000000272

Eschenbeck, H., Lehner, L., Hofmann, H., Bauer, S., Becker, K., Diestelkamp, S., Kaess, M., Moessner, M., Rummel-Kluge, C., & Salize, H.-J. (2019). School-based mental health promotion in children and adolescents with StresSOS using online or face-to-face interventions: A study protocol for a randomized controlled trial within the ProHEAD Consortium. Trials, 20. https://doi.org/10.1186/s13063-018-3159-5

Finkeldey, J. G., Longmore, M. A., Giordano, P. C., & Manning, W. D. (2020). Identifying as a troublemaker/partier: The influence of parental incarceration and emotional independence. Journal of Child and Family Studies, 29, 802–816. https://doi.org/10.1007/s10826-019-01561-y

Fisher, G. L., & Harrison, T. C. (2018). Substance abuse: Information for school counselors, social workers, therapists, and counselors (6th ed.). Pearson.

Fuhrmann, D., Knoll, L. J., & Blakemore, S.-J. (2015). Adolescence as a sensitive period of brain development. Trends in Cognitive Sciences, 19(10), 558–566. https://doi.org/10.1016/j.tics.2015.07.008

Gobbi, G., Atkin, T., Zytynski, T., Wang, S., Askari, S., Boruff, J., Ware, M., Marmorstein, N., Cipriani, A., Dendukuri, N., & Mayo, N. (2019). Association of cannabis use in adolescence and risk of depression, anxiety, and suicidality in young adulthood: A systematic review and meta-analysis. JAMA Psychiatry, 76(4), 426–434. https://doi.org/10.1001/jamapsychiatry.2018.4500

Hadland, S. E. (2019). Epidemiology and historical drug use patterns. In J. W. Welsh & S. E. Hadland (Eds.), Treating adolescent substance use: A clinician’s guide (pp. 3–14). Springer.

Harris, B. R. (2016). Talking about screening, brief intervention, and referral to treatment for adolescents: An upstream intervention to address the heroin and prescription opioid epidemic. Preventive Medicine, 91, 397–399. https://doi.org/10.1016/j.ypmed.2016.08.022

Harris, S. K., Louis-Jacques, J., & Knight, J. R. (2014). Screening and brief intervention for alcohol and other abuse. Adolescent Medicine State of the Art Review, 25(1), 126–156.

Haskins, N. H. (2012). The school counselor’s role with students at-risk for substance abuse. VISTAS 2012, Vol. 1, 1–8. American Counseling Association.

Hecht, M. L., Marsiglia, F. F., Elek, E., Wagstaff, D. A., Kulis, S., Dustman, P., & Miller-Day, M. (2003). Culturally-grounded substance use prevention: An evaluation of the keepin’ it R.E.A.L. curriculum. Prevention Science, 4, 233–248. https://doi.org/10.1023/A:1026016131401

Hendershot, C. S., Witkiewitz, K., George, W. H., & Marlatt, G. A. (2011). Relapse prevention for addictive behaviors. Substance Abuse Treatment, Prevention, and Policy, 6(17). https://doi.org/10.1186/1747-597X-6-17

Henneberger, A. K., Gest, S. D., & Zadzora, K. M. (2019). Preventing adolescent substance use: A content analysis of peer processes targeted within universal school-based programs. The Journal of Primary Prevention, 40, 213–230. https://doi.org/10.1007/s10935-019-00544-5

Hohman, Z. P., Crano, W. D, Siegel, J. T., & Alvaro, E. M. (2014). Attitude ambivalence, friend norms, and adolescent drug use. Prevention Science, 15(1), 65–74.
https://doi.org/10.1007/s11121-013-0368-8

Johnston, L. D., Miech, R. A., O’Malley, P. M., Bachman, J. G., Schulenberg, J. E., & Patrick, M. E. (2020). Monitoring the future national survey results on drug use: 1975–2019: Overview, key findings on adolescent drug use. Institute for Social Research, The University of Michigan.

Jordan, C. J., & Andersen, S. L. (2017). Sensitive periods of substance abuse: Early risk for the transition to dependence. Developmental Cognitive Neuroscience, 25, 29–44.
https://doi.org/10.1016/j.dcn.2016.10.004

Kann, L., McManus, T., Harris, W. A., Shanklin, S. L., Flint, K. H., Queen, B., Lowry, R., Chyen, D., Whittle, L., Thornton, J., Lim, C., Bradford, D., Yamakawa, Y., Leon, M., Brener, N., & Etheir, K. A. (2018). Morbidity and mortality weekly report: Youth risk behavior surveillance—United States, 2017. Surveillance Summaries, 67(8), 1–114. https://doi.org/10.15585/mmwr.ss6708a1

Karatay, G., & Baş, N. G. (2017). Effects of role-playing scenarios on the self-efficacy of students in resisting against substance addiction: A pilot study. The Journal of Health Care Organization, Provision, and Financing, 54, 1–6. https://doi.org/10.1177/0046958017720624

Knight, J. R. (2016). The CRAFFT interview (version 2.0). Boston Children’s Hospital. https://crafft.org/wp-content/uploads/2019/02/CRAFFT-2.0_Clinician-Interview.pdf

Knight, J. R., Sherritt, L., Shriter, L. A., Harris, S. K., & Chang, G. (2002). Validity of the CRAFFT substance abuse screening test among adolescent clinic patients. Archives of Pediatric Adolescent Medicine, 156(6), 607–614. https://doi.org/10.1001/archpedi.156.6.607

Knight, J. R., Shrier, L. A., Bravender, T. D., Farrell, M., Vander Bilt, J., & Shaffer, H. J. (1999). A new brief screen for adolescent substance abuse. Archives of Pediatric Adolescent Medicine, 153(6), 591–596. https://doi.org/10.1001/archpedi.153.6.591

Kuperman, S., Chan, G., Kramer, J. R., Wetherill, L., Bucholz, K. K., Dick, D., Hesselbrock, V., Porjesz, B., Rangaswamy, M., & Schuckit, M. (2013). A model to determine the likely age of an adolescent’s first drink of alcohol. Pediatrics, 131(2), 242–248. https://doi.org/10.1542/peds.2012-0880

Lee, C.-K., Corte, C., & Stein, K. F. (2018). Drinker identity: Key risk factor for adolescent alcohol use. Journal of School Health, 88(3), 253–260. https://doi.org/10.1111/josh.12603

Lee, C.-K., Corte, C., Stein, K. F., Feng, J.-Y., & Liao, L.-L. (2020). Alcohol-related cognitive mechanisms underlying adolescent alcohol use and alcohol problems: Outcome expectancy, self-schema, and self-efficacy. Addictive Behaviors, 105, 106349. http://doi.org/10.1016/j.addbeh.2020.106349

Levy, S., Sherritt, L., Harris, S. K., Gates, E. C., Holder, D. W., Kulig, J. W., & Knight, J. R. (2004). Test-retest reliability of adolescents’ self-report of substance use. Alcoholism: Clinical and Experimental Research, 28(8), 1236–1241. https://doi.org/10.1097/01.alc.0000134216.22162.a5

Levy, S. J. L., Williams, J. F., & Committee on Substance Abuse Use and Prevention. (2016). Substance use screening, brief intervention, and referral to treatment. Pediatrics, 138(1), 143.
http://doi.org/10.1542/peds.2016-1211

Linakis, J. G., Bromberg, J. R., Casper, T. C., Chun, T. H., Mello, M. J., Richards, R., Mull, C. C., Shenoi, R. P., Vance, C., Ahmad, F., Bajaj, L., Brown, K. M., Chernick, L. S., Cohen, D. M., Fein, J., Horeczko, T., Levas, M. N., McAninch, B., Monuteaux, M. C., . . . Dean, J. M. (2019). Predictive validity of a 2-question alcohol screen at 1-, 2-, and 3-year follow-up. Pediatrics, 143(3). https://doi.org/10.1542/peds.2018-2001

Lintz, M. J., Thurstone, C., Hull, M., & Ladegard, K. (2019). Development of a school-based substance treatment model. Journal of Child & Adolescent Substance Abuse, 28(2), 127–131.
https://doi.org/10.1080/1067828X.2019.1623145

McNeal, R. B., Jr., Hansen, W. B., Harrington, N. G., & Giles, S. M. (2004). How All Stars works: An examination of program effects on mediating variables. Health Education & Behavior, 31(2), 165–178. https://doi.org/10.1177/1090198103259852

Miech, R., Patrick, M. E., O’Malley, P. M., & Johnston, L. D. (2017). E-cigarette use as a predictor of cigarette smoking: Results from a 1-year follow up of a national sample of 12th grade students. Tobacco Control, 26(E2), e106–e111. https://doi.org/10.1136/tobaccocontrol-2016-053291

Miller, W. R., & Rollnick, S. (2013). Motivational interviewing: Helping people change (3rd ed.). Guilford.

Mogro-Wilson, C., Allen, E., & Cavallucci, C. (2017). A brief high school prevention program to decrease alcohol usage and change social norms. Social Work Research, 41(1), 53–62.
https://doi.org/10.1093/swr/svw023

Naar-King, S., & Suarez, M. (2011). Motivational interviewing with adolescents and young adults. Guilford.

Nagy, E., Verres, R., & Grevenstein, D. (2017). Risk competence in dealing with alcohol and other drugs in adolescence. Substance Use & Misuse, 52(14), 1892–1909. https://doi.org/10.1080/10826084.2017.1318149

National Institute on Alcohol Abuse and Alcoholism. (2011). Alcohol screening and brief intervention for youth: A practitioner’s guide. www.niaaa.nih.gov/YouthGuide

Ohannessian, C. M. (2014). Anxiety and substance use during adolescence. Substance Abuse, 35(4), 418–425. https://doi.org/10.1080/08897077.2014.953663

Pedrelli, P., Shapero, B., Archibald, A., & Dale, C. (2016). Alcohol use and depression during adolescence and young adulthood: A summary and interpretation of mixed findings. Current Addiction Reports, 3(1), 91–97. https://doi.org/10.1007/s40429-016-0084-0

Prestwich, A., Kellar, I., Conner, M., Lawton, R., Gardner, P., & Turgut, L. (2016). Does changing social influence engender changes in alcohol intake? A meta-analysis. Journal of Consulting and Clinical Psychology, 84(10), 845–860. https://doi.org/10.1037/ccp0000112

Pullen, P. C., van Dijk, W., Gonsalves, V. E., Lane, H. B., & Ashworth, K. E. (2019). Response to intervention and multi-tiered systems of support: How do they differ and how are they the same, if at all? In P. C. Pullen & M. J. Kennedy (Eds.), Handbook of response to intervention and multi-tiered systems of support (pp. 5–10). Routledge.

Randolph, K., Turull, P., Margolis, A., & Tau, G. (2013). Cannabis and cognitive systems in adolescents. Adolescent Psychiatry, 3(2), 135–147. https://doi.org/10.2174/2210676611303020004

Renard, J., Vitalis, T., Rame, M., Krebs, M.-O., Lenkei, Z., Le Pen, G., & Jay, T. M. (2016). Chronic cannabinoid exposure during adolescence leads to long-term structural and functional changes in the prefrontal cortex. European Neuropsychopharmacology, 26(1), 55–64. https://doi.org/10.1016/j.euroneuro.2015.11.005

Rimal, R. N., & Real, K. (2005). How behaviors are influenced by perceived norms: A test of the theory of normative social behavior. Communication Research, 32(3), 389–414. https://doi.org/10.1177/0093650205275385

Rollnick, S., Kaplan, S. G., & Rutschman, R. (2016). Motivational interviewing in schools: Conversations to improve behavior and learning. Guilford.

Romer, D., & Moreno, M. (2017). Digital media and risks for adolescent substance abuse and problematic gambling. Pediatrics, 140(S2), S102–S106. https://doi.org/10.1542/peds.2016-1758L

Schulenberg, J. E., & Maggs, J. L. (2002). A developmental perspective on alcohol use and heavy drinking during adolescence and the transition to young adulthood. Journal of Studies on Alcohol, 14, 54–70. http://doi.org/10.15288/jsas.2002.s14.54

Shenoi, R. P., Linakis, J. G., Bromberg, J. R., Casper, T. C., Richards, R., Mello, M. J., Chun, T. H., & Spirito, A. (2019). Predictive validity of the CRAFFT for substance use disorder, 144(2).
https://doi.org/10.1542/peds.2018-3415

Singh, S., Windle, S. B., Filion, K. B., Thombs, B. D., O’Loughlin, J. L., Grad, R., & Eisenberg, M. J. (2020). E-cigarettes and youth: Patterns of use, potential harms, and recommendations. Preventive Medicine, 133, 106009. http://doi.org/10.1016/j.ypmed.2020.106009

Stephens, P. C., Sloboda, Z., Stephens, R. C., Teasdale, B., Grey, S. F., Hawthorne, R. D., & Williams, J. (2009). Universal school-based substance abuse prevention programs: Modeling targeted mediators and outcomes for adolescent cigarette, alcohol and marijuana use. Drug and Alcohol Dependence, 102(1–3), 19–29. https://doi.org/10.1016/j.drugalcdep.2008.12.016

Substance Abuse and Mental Health Services Administration. (2014). The Center for Behavioral Health Statistics and Quality (CBHSQ) Report. https://pubmed.ncbi.nlm.nih.gov/26913315

Substance Abuse and Mental Health Services Administration. (2018). Key substance use and mental health indicators in the United States: Results from the 2017 National Survey on Drug Use and Health (HHS Publication No. SMA 18-5068, NSDUH Series H-53). Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration. https://www.samhsa.gov/data/sites/default/files/cbhsq-reports/NSDUHFFR2017/NSDUHFFR2017.pdf

Trucco, E. M., Colder, C. R., & Wieczorek, W. F. (2011). Vulnerability to peer influence: A moderated mediation study of early adolescent alcohol use initiation. Addictive Behaviors, 36(7), 729–736. https://doi.org/10.1016/j.addbeh.2011.02.008

Wade-Mdivanian, R., Anderson-Butcher, D., Newman, T. J., Ruderman, D. E., Smock, J., & Christie, S. (2016). Exploring the long-term impact of a positive youth development-based alcohol, tobacco and other drug prevention program. Journal of Alcohol and Drug Education, 60(3), 67–89.

Whittle, A. E., Buckelew, S. M., Satterfield, J. M., Lum, P. J., & O’Sullivan, P. (2015). Addressing adolescent substance use: Teaching Screening, Brief Intervention, and Referral to Treatment (SBIRT) and Motivational Interviewing (MI) to residents. Substance Abuse, 36(3), 325–331.
https://doi.org/10.1080/08897077.2014.965292

Whyte, A. J., Torregrossa, M. M., Barker, J. M., & Gourley, S. L. (2018). Editorial: Long-term consequences of adolescent drug use: Evidence from pre-clinical and clinical models. Frontiers in Behavioral Neuroscience, 12(83), 6–8. https://doi.org/10.3389/fnbeh.2018.00083

Wills, T. A., Simons, J. S., Sussman, S., & Knight, R. (2016). Emotional self-control and dysregulation: A dual-process analysis of pathways to externalizing/internalizing symptomatology and positive well-being in younger adolescents. Drug and Alcohol Dependence, 163(S1), S37–S45.
http://doi.org/10.1016/j.drugalcdep.2015.08.039

Winters, K. C., Fahnhorst, T., Botzet, A., Lee, S., & Lalone, B. (2012). Brief intervention for drug-abusing adolescents in a school setting: Outcomes and mediating factors. Journal of Substance Abuse Treatment, 42(3), 279–288. https://doi.org/10.1016/j.jsat.2011.08.005

Yu, B., Chen, X., Chen, X., & Yan, H. (2020). Marijuana legalization and historical trends in marijuana use among US residents aged 12–25: Results from the 1979–2016 National Survey on Drug Use and Health. BMC Public Health, 20, 156. https://doi.org/10.1186/s12889-020-8253-4

Zapolski, T. C. B., Fisher, S., Banks, D. E., Hensel, D. J., & Barnes-Najor, J. (2017). Examining the protective effect of ethnic identity on drug attitudes and use among a diverse youth population. Journal of Youth and Adolescence, 46, 1702–1715. https://doi.org/10.1007/s10964-016-0605-0

Ziomek-Daigle, J. (Ed.). (2016). School counseling classroom guidance: Prevention, accountability, and outcomes. SAGE.

Zucker, R. A., Donovan, J. E., Masten, A. S., Mattson, M. E., & Moss, H. B. (2008). Early developmental processes and the continuity of risk for underage drinking and problem drinking. Pediatrics, 121(S4), S252–S272. http://doi.org/10.1542/peds.2007-2243B

 

Appendix A
Study Subscales

  Substance Use

0 days; 1–2 days; 3–5 days; 6–9 days; 10–19 days; 20–29 days; everyday

1 In the past 30 days, how many days did you have at least one drink of alcohol?
2 In the past 30 days, how many days have you used marijuana?
3 In the past 30 days, how many days have you vaped?
4 In the past 30 days, how many days have you used tobacco?
5 In the past 30 days, how many days have you used prescription drugs in a way other than prescribed?
6 In the past 30 days, how many days have you used illegal drugs?
7 In the past 30 days, how many days have you used other means to get high?
  Self-Assessment of Use
Yes or No
1 Have you ever ridden in a car driven by someone (including yourself) who was “high” or using alcohol or drugs?
2 Do you ever use alcohol or drugs to relax, feel better about yourself, or fit in?
3 Do you ever use alcohol or drugs while you are by yourself, or alone?
4 Do you ever forget things you did while using alcohol or drugs?
5 Do your family or friends ever tell you that you should cut down on your drinking or your drug use?
6 Have you ever gotten in trouble while you were using alcohol or drugs?
7 Are you worried about alcohol or drug abuse among your friends?
8 Are you worried about alcohol or drug abuse in your family?
  Attitudes About Use

1 – not very bad for you; 2 – somewhat bad for you; 3 – very bad for you

1 How harmful is it to occasionally use alcohol?
2 How harmful is it to occasionally use marijuana?
3 How harmful is it to occasionally use e-cigs or vaporizers (vaping)?
4 How harmful is it to occasionally use tobacco?
5 How harmful is it to occasionally use prescription drugs in a way other than prescribed?
6 How harmful is it to occasionally use illegal drugs or other ways to get high?
  Readiness to Change
  1 – very likely; 2 – somewhat likely; 3 – somewhat unlikely; 4 – not at all likely
  If you currently use any of the substances below, on a scale of 1–4, how likely is it you would reduce or stop your use?
1 Alcohol
2 Marijuana
3 Vaping
4 Tobacco
5 Prescription drugs outside of their intended purpose
6 Illegal drugs or other ways to get high

 

Appendix B
MCARR Curriculum

MCARR Curriculum
Module 1

Orientation to the MCARR Program and Community Building

Learning Objectives

At the end of this lesson, students will:

Establish the foundation for the development of community within the classroom group.

Recognize community and civic responsibility within the students’ own school.

Identify the benefits of being a part of a classroom community, including the value in being socially and emotionally supported by others in social environments.

Activities

Psychoeducational lecture.

Team-building activity.

Scenarios: Students consider scenarios of school- and community-related challenges that require social connectedness and help students develop solutions that promote stronger social bonds and support.

Module 2

Personal Coping

Learning Objectives

At the end of this lesson, students will:

Recall the potential impact of stress and how it may correlate with less healthy choices, such as drug and alcohol use, including warning signals within self and others.

Identify coping skills that can mediate the negative impact of stress on student well-being.

Recognize healthy stress-reducing behaviors already used by students and introduce new coping strategies for managing stress.

Activities

Psychoeducational lecture.

Students practice several basic methods for managing life stress, including diaphragmatic breathing and abbreviated progressive muscle relaxation.

Students identify life stress and coping strategies, with special emphasis on the potential for strategies to reduce the risk of drug and alcohol use.

Module 3

Attitudes and Messages About Use

Learning Objectives

At the end of this lesson, students will:

1.   Recognize the impact of societal attitudes and messages on adolescent substance use.

2.   Identify the messages received through the media about substances and the impact on student
decision-making.

3.   Define the impact of stress and normalization of common responses to stress.

Activities

Psychoeducational lecture.

Group discussion on a series of photos and statements made by popular musicians. Students assume the perspective of the popular figure, theorize about attitudes they may have had, and evaluate the impact of those attitudes on the lives of those figures.

Students are then challenged to understand other popular culture influences on drug and alcohol use.

Module 4

Alcohol

Learning Objectives

At the end of this lesson, students will:

1.   Identify the physiological and neurological mechanisms of alcohol use and potential harm and
consequences of use.

2.   Recognize the impact of alcohol on the body.

3.   Define the long-term and short-term physiological and psychosocial effects of alcohol on adolescents.

Activities

Psychoeducational lecture.

Students complete and share a body map worksheet to draw arrows and make linkages of the impact of alcohol use on the adolescent body.

Small groups are given scenarios to consider a day in the life of an alcoholic beverage, from the perspective of the beverage as a character in the scenario.

Students consider elements of the CRAFFT as applied to hypothetical characters involved in their story.

Module 5

Community Partners

Learning Objectives

At the end of this lesson, students will:

1.   Discuss the influence of the community on adolescent drug and alcohol use and methods by which
the community can be used to support those at risk of drug and alcohol problems.

2.   Describe the potential benefit or harm of specific peer attitudes and behaviors related to drug and
alcohol use.

3.   Recognize signs of possible alcohol or drug use problems among members of the community.

Activities

Psychoeducational lecture

In small groups, students describe a caring school community, followed by a group discussion of harmful and helpful aspects of peer influence.

Exposure to assessment methods such as yellow and red flags that may indicate a substance use problem and the CRAFFT screening tool.

Using role play, students practice methods for communicating with a peer that may minimize defensiveness and identify points of intervention.

Module 6

Assumptions and Low-Risk Limits

Learning Objectives

At the end of this lesson, students will:

Recognize assumptions made about substance use in school and society.

Classify facts and myths about drug and alcohol use.

Understand risk levels of use for both adolescents and adults and how these may present in various situations.

Activities

Psychoeducational lecture.

Team-building activity, with processing focused on the dynamics of group decision-making.

Myths are presented in a series of group discussion true/false questions about descriptive norms to help students understand that drug or alcohol use is not an inevitable part of the adolescent experience.

Established guidelines for adult limits and moderate use of alcohol are presented, while simultaneously emphasizing that no amount of alcohol represents low or moderate risk for minors.

Case studies are used to apply yellow and red flag warning signs discussed in prior lesson.

Module 7

Cannabis, Nicotine, and E-Cigarettes

Learning Objectives

At the end of this lesson, students will:

1.   Identify a variety of hazards associated with cannabis and nicotine, with special focus on e-cigarettes.

2.   Comprehend the physiological and neurological impacts of cannabis and nicotine on adolescents.

3.   Describe and practice refusal skills related to cannabis and nicotine.

Activities

Students are provided with an overview of the mechanisms involved in cannabis use and learn about the impact of cannabis on the developing brain, such as learning and memory deficits, loss of motivation, and mood swings.

In the “Whose truth is it, anyway?” discussion, students are given a series of statements and asked to measure the likelihood of the statement’s veracity, depending on the source of the statement and other influencing factors.

After this content, students move around the classroom to find classmates who can answer various questions correctly.

Module 8

Opioids and Cocaine

Learning Objectives

At the end of this lesson, students will:

Recognize the classes of drugs related to opioids and cocaine and trends in use and abuse of these drugs, including risk of serious injury or death.

Recall facts about physiological and neurological impacts of various forms of opioids and cocaine.

Summarize the dangers of opioid use.

Activities

Psychoeducational lecture.

Video to demonstrate neurological dynamics and physiological mechanisms, including the potential for overdose.

Students brainstorm resources in their school community and receive information on community resources for helping those with addiction, including professional networks, such as counselors and other mental health providers, and informal networks, such as neighborhood and faith leaders.

In dyads, students are asked to role-play skills for persuading a peer or loved one to seek professional help and weigh the pros and cons of these decisions.

Module 9

Review: Decisions

Learning Objectives

At the end of this lesson, students will:

1.   Identify the experiences and information presented throughout the curriculum, with an overarching
theme of decisional balance.

2.   Recall key information related to each module.

3.   Describe what the curriculum has meant to each student and how they envision the experience
impacting future decisions.

Activities

Students participate in a learning game in which teams compete to give correct answers about key concepts, including facts about the dynamics of problem alcohol and drug use and its consequences and risks.

Students report on identifying and coping with stress, connecting with a caring community, and advocating for their and others’ needs.

Students are reminded of the influence of myths, attitudes, and assumptions on the use of alcohol and drugs and recollect components of the CRAFFT.

 

Louisa L. Foss-Kelly, PhD, NCC, ACS, LPC, is a professor at Southern Connecticut State University. Margaret M. Generali, PhD, is a certified school counselor and a professor and department chair at Southern Connecticut State University. Michael J. Crowley, PhD, is a licensed psychologist and an associate professor at Yale University. Correspondence may be addressed to Louisa L. Foss-Kelly, Counseling and School Psychology, Southern Connecticut State University, 501 Crescent St., New Haven, CT 06515, fossl1@southernct.edu.

 

Suicide Protective Factors: Utilizing SHORES in School Counseling

Diane M. Stutey, Jenny L. Cureton, Kim Severn, Matthew Fink

 

Recently, a mnemonic device, SHORES, was created for counselors to utilize with clients with suicidal ideation. The acronym of SHORES stands for Skills and strategies for coping (S); Hope (H); Objections (O); Reasons to live and Restricted means (R); Engaged care (E); and Support (S). In this manuscript, SHORES is introduced as a way for school counselors to address protective factors against suicide. In addition, the authors review the literature on comprehensive school suicide prevention and suicide protective factors; describe the relevance of a suicide protective factors mnemonic that school counselors can use; and illustrate the mnemonic’s application in classroom guidance, small-group, and individual settings.

Keywords: suicide prevention, protective factors, school counselors, SHORES, mnemonic

 

Rates of youth suicide have increased tremendously in the last decade. A report by the National Center for Health Statistics in 2019 indicated that suicide rates among American youth ages 10–24 increased 56% from 2007 to 2017, making it the second leading cause of death in this age group; during this same time period, the rate almost tripled for those ages 10–14 (Curtin & Heron, 2019). Additionally, the Centers for Disease Control and Prevention (CDC; 2017) reported that suicide is now the ninth leading cause of death for children ages 5–11.

The suicide rates for children as young as 5 can seem alarming and impact school counselors at all grade levels. Sheftall et al. (2016) stated that children who died by suicide in this younger age range were frequently diagnosed with a mental health disorder. In children, this diagnosis was usually attention deficit disorder with or without hyperactivity, and in young adolescents the diagnosis was most often depression or dysthymia. Researchers have also found that certain risk factors, such as childhood trauma, bullying, and academic pressure, can increase suicidal risk for youth (Cha et al., 2018; Jobes et al., 2019; Lanzillo et al., 2018).

Researchers agree that early prevention and intervention is essential to reduce youth suicides
(Cha et al., 2018; Lanzillo et al., 2018; Sheftall et al., 2016). Similarly, postvention efforts, or crisis response strategies following a student’s suicide, can lessen school suicide contagion and support future prevention efforts (American Foundation for Suicide Prevention [AFSP] et al., 2019). In this article, we review the literature on youth suicide and efforts to address it including leveraging protective factors, and we introduce the relevance of a suicide protective factors mnemonic that school counselors can apply in classroom guidance, small-group, and individual settings (American School Counselor Association [ASCA], 2019).

School Suicide Prevention
     Curtin and Heron (2019) called for proactive efforts to help address the rising statistics for youth suicide, and schools are a natural place for prevention, intervention, and postvention to occur. Students spend the majority of their waking hours at school and have frequent contact with teachers, counselors, administrators, and peers. School efforts to address suicide risk must include these stakeholders, as well as parents and community members (Ward & Odegard, 2011).

A suicide prevention effort is a strategy intended to reduce the chance of suicide and/or possible harm caused by suicide (U.S. Department of Health and Human Services [HHS], Office of the Surgeon General and National Action Alliance for Suicide Prevention, 2012). Best practice for suicide prevention in schools includes training all stakeholders, including students (Wyman et al., 2010). This training, frequently referred to as gatekeeper training, should include information about suicide warning signs and risk factors, as well as suicide protective factors, such as seeking help and having social connections. The World Health Organization’s (WHO; 2006) booklet for counselors on suicide prevention lists several suicide warning signs, including ones with relevance to school-age youth, such as decreased school achievement, changed sleeping and eating, preoccupation with death, sudden promiscuity, or reprieve from depression (pp. 5–6). Another important component of school suicide prevention is training and practice on how to help a student who exhibits these and/or other suicidal warning signs (AFSP et al., 2019). Institutional efforts, such as forming crisis teams (AFSP et al., 2019), and anti-bullying programs can also contribute to school suicide prevention efforts (HHS, 2012).

Other school prevention efforts involve small-group and whole classroom lessons on resiliency, coping skills, executive functioning skills, and help-seeking behavior (Sheftall et al., 2016). Many programs exist and are beneficial at elementary, middle, and high school levels. The Suicide Prevention Resource Center (SPRC; 2019a) listed many options: Signs of Suicide, More Than Sad, Sources of Strength, and Kognito. Of these examples, only Signs of Suicide contains training for warning signs, suicide risk factors, and suicide protective factors. Some suicide prevention programs are state and population specific, but all include the information needed to help stakeholders to know the risks and signs, and to have a plan on how to help youth with suicidal thoughts. Talking about suicide prevention with all stakeholders promotes increased help-seeking behavior in children and adolescents (Wyman et al., 2010).

School Suicide Intervention
     Suicide is an ongoing issue that many school counselors handle via intervention efforts. A suicide intervention effort is a strategy to change the course of an existing circumstance or risk trajectory for suicide (HHS, 2012). School counselors are a natural choice for helping to implement suicide prevention and intervention programs, as they often have training on working with students at risk for suicidal ideation (Gallo, 2018). Additionally, school counselors are ethically responsible to help create a “safe school environment . . . free from abuse, bullying, harassment and other forms of violence” and to “advocate for and collaborate with students to ensure students remain safe at home and at school” (ASCA, 2016, pp. 1, 4). One key component of school suicide intervention is suicide risk assessment. Gallo (2018) researched 200 high school counselors representing 43 states and found that 95% agreed it was their role to assess for suicidal risk, and 50.5% were conducting one or more suicide risk assessments each month. Other aspects of intervention include potential involvement of administrators, parents, and emergency or law enforcement services; referral to outside health care providers; and safety planning, including lethal means counseling (AFSP et al., 2019). School and other counselors are also involved in ongoing check-ins with students, re-entry planning after a mental health crisis, and responses to in-school and out-of-school suicide attempts.

School Suicide Postvention
     Suicide postvention involves attending to those “affected in the aftermath of a suicide attempt or suicide death” (HHS, 2012, p. 141). ASCA, in collaboration with AFSP, the Trevor Project, and the National Association of School Psychologists, released the Model School District Policy on Suicide Prevention that outlines policies and practices for districts, schools, and school professionals to protect student health and safety (AFSP et al., 2019). The model policy addresses postvention by summarizing a 7-step action plan involving school counselors and other professionals: 1) get the facts, 2) assess the situation, 3) share information, 4) avoid suicide contagion, 5) initiate support services, 6) develop memorial plans, and 7) postvention as prevention (pp. 11–13). The latest edition of a suicide postvention toolkit for schools (SPRC, 2019a) highlighted counselors’ collaborative work for crisis response and suicide contagion; how they help students with coping and memorialization; and their involvement with community, media, and social media.

Addressing factors that protect against suicide is an important component of school district policies to combat suicide (AFSP et al., 2019) and of comprehensive school suicide prevention (Granello & Zyromski, 2018). Leveraging suicide protective factors is one way for school counselors to fulfill professional obligations and recommendations concerning student suicide risk. What remains unclear from the literature is how school counselors explore and enhance protective factors in their suicide prevention, intervention, and postvention efforts.

Suicide Risk and Protective Factors
     The SPRC (2019b) defined suicide risk factors as “characteristics that make it more likely that individuals will consider, attempt, or die by suicide” and protective factors as those which make such events less likely (p. 1). High suicide risk involves a combination of risk factors. Examples of suicide risk factors include a prior attempt, mood disorders, alcohol abuse, and access to lethal means, whereas examples of suicide protective factors include connectedness, health care availability, and coping ability (SPRC, 2019b). Protective factors “are considered insulators against suicide,” which can “counterbalance the extreme stress of life events” (WHO, 2006, p. 3). Both risk and protective factors have varying levels of significance depending on the individual and their community (SPRC, 2019b).

Guidance from multiple sources stresses the salience of incorporating attention to suicide risk and protective factors into school counseling. The AFSP et al. (2019) Model School District Policy on Suicide Prevention notes risk and protective factors as crucial content in staff development and youth suicide prevention programming. In addition to the risk factors named above, the policy names high-risk groups, such as students who are involved in juvenile or child welfare systems; those who have experienced homelessness, bullying, or suicide loss; those who are lesbian, gay, bisexual, transgender, or questioning; or those who are American Indians/Alaska Natives (AFSP et al., 2019).

School counselors should know suicide protective factors that are specific to school settings and to the ages of students that they serve. The Model School District Policy on Suicide Prevention (AFSP et al., 2019) also highlights the role that accepting parents and positive connections within social institutions can play in a student’s resiliency. Despite suicide prevention policy guidelines, numerous structured programs, and growing research on youth suicide protective factors, very little guidance is offered on practical methods for school counselors to address students’ suicide protective factors. The purpose of this manuscript is to introduce to school counselors a recently published, research-based mnemonic—SHORES (Cureton & Fink, 2019). The acronym of SHORES stands for Skills and strategies for coping (S); Hope (H); Objections (O); Reasons to live and Restricted means (R); Engaged care (E); and Support (S). SHORES equips school counselors with a promising tool to guide suicide prevention, intervention, and postvention via direct and indirect school counseling services.

SHORES

Cureton and Fink (2019) created a mnemonic device called SHORES for counselors to utilize when working with clients. SHORES represents protective factors against suicide and the letters in the acronym were carefully selected based on support in the literature.

Figure 1

Cureton, J. L., & Fink, M. (2019). SHORES: A practical mnemonic for suicide protective factors. Journal of Counseling &
Development, 97(3), 325–335.

In the following sections, the authors define each part of the acronym and discuss how school counselors may apply SHORES with students. After discussing each of the protective factors in the mnemonic, we present a case example to demonstrate how school counselors may implement the SHORES tool with students in their school.

S: Skills and Strategies for Coping
     First, school counselors can explore with students what skills and strategies for coping (S) with adversity they might already have in place, work to strengthen these, and also foster development of new coping skills and strategies. Cureton and Fink (2019) shared that some of the skills and strategies for coping that counter thoughts of suicide include emotional regulation, adaptive thinking, and engaging in one’s interests (Berk et al., 2004; Fredrickson & Joiner, 2002; Law et al., 2015). For youth, such engagement includes academic and non-academic pursuits (Taliaferro & Muehlenkamp, 2014). School counselors often meet with students to discuss coping strategies and stress management; therefore, this step can easily be incorporated into working with students demonstrating signs of stress or even suicidal ideation.

Mindfulness skills and strategies may be particularly impactful for schools to incorporate. Research findings support the importance of a student’s emotional regulation skills, as dysregulation is associated with children’s suicidal thoughts (Wyman et al., 2009) and adolescents’ suicide attempts (Pisani et al., 2013). There is substantial research evidence on the positive effect of mindfulness interventions in children and adolescents, particularly for decreasing depression and anxiety (Dunning et al., 2019). Flook et al. (2010) used a school-based mindful awareness program with elementary school children that incorporated sitting meditation; a brief visualized body scan; and games for sensory awareness, attentional regulation, awareness of others, and awareness of the space around them. They found improvements in elementary school children’s metacognition, behavioral regulation, and executive control. Broderick and Jennings (2012) posited that mindfulness practice is an effective coping strategy for adolescents because it “offers the opportunity to develop hardiness in the face of uncomfortable feelings that otherwise might provoke a behavioral response that may be harmful to self and others” (p. 120). Teaching or practicing mindfulness with students might include helping them with body awareness, understanding and working with thoughts and feelings, and reducing harmful self-judgements while increasing positive emotions.

H: Hope
     Cureton and Fink (2019) suggested that hope (H) can protect against suicide because it may counterbalance negative emotions and cognitions. Studies have demonstrated that hope can help to safeguard the influence of hopelessness on suicidal ideation and that hope could, in turn, relieve a person’s feelings of being a burden and not belonging (Davidson et al., 2009; Huen et al., 2015). Researchers have found that adolescents with hope have lower suicide risk (Wai et al., 2014) and that hope moderates depression and suicidal ideation, even among adolescents who experienced childhood neglect (Kwok & Gu, 2019).

Furthermore, Tucker and colleagues (2013) discovered that establishing hope can also decrease some of the adverse impacts of rumination on suicidal ideation. Classroom guidance lessons could help school counselors to assess if there are individual students who seem to lack hope; these students might be good candidates for small-group or individual counseling. If school counselors wanted to implement a schoolwide comprehensive program, they might look at implementing Hope Squads. Over 300 schools in Utah have implemented peer-to-peer suicide prevention programs called Hope Squads, which work to instill hope and create a school culture of connectedness and belonging (Wright-Berryman et al., 2019). Hope Squads could also be utilized in the final stage of SHORES as a source of Support (S).

Another way that researchers found to decrease suicidal ideation was building hope through goal-setting (Lapierre et al., 2007). School counselors are in a prime position to help with goal-setting and could incorporate the topic of hope when helping students to set goals. One evidence-based intervention that can be utilized by school counselors to help students with goal-setting is Student Success Skills. School counselors teaching the Student Success Skills lessons not only encourage students to set wellness goals, but also teach attitudes and approaches that will help students socially and to reach their academic potential (Villares et al., 2011).

O: Objections
     Cureton and Fink (2019) included another supported protective factor: moral or cultural objections (O) to suicide. Researchers have found that individuals with fewer moral objections to suicide were more likely to attempt suicide (Lizardi et al., 2008), while those with a religious objection may have fewer attempts (Lawrence et al., 2016). Ibrahim and colleagues (2019) discovered that the role of religious and existential well-being was a protective factor for suicidal ideation with adolescents.

Research shows that school counselors feel ready to address spirituality with students, and at least one suicide prevention program could help with that focus. Smith-Augustine (2011) found that 86% of the 44 school counselors and school counseling interns who participated in a descriptive study had spirituality and religious issues arise with students, and 88% reported they felt comfortable addressing these issues with students. Although the focus is not on religion, this topic may come up when discussing spirituality, and school counselors working in public schools will want to be mindful of any restrictions from their district about discussing religion and/or spirituality with students. One evidence-based suicide prevention program that addresses spirituality is Sources of Strength (2017).

Sources of Strength has been used primarily in high school settings, but guidance for its application in elementary schools is also available. While participating in Sources of Strength, youth are asked to reflect on and discuss a range of spiritual practices, ways they are thankful, and how they view themselves as “connected to something bigger” (Sources of Strength, 2017). Wyman and colleagues (2010) discovered that participating in Sources of Strength helped increase students’ perceptions of connectedness at school, in particular with adults in the building. Implementing this program would allow school counselors to seek out those students at risk and have further individual conversations and tailor any necessary interventions to that student’s cultural and religious/spiritual beliefs. School counselors could also refer students and families to therapists outside of the school setting who may be able to further explore spiritual and cultural beliefs and resources.

More research is needed about how cultural objections to suicide impact youth. For instance, there is a longstanding belief that the view in the Black community of suicide as “a White thing” (Early & Akers, 1993) acts as a suicide protective factor. But in the wake of rising suicide rates among Black youth, Walker (2020) challenged this notion, arguing that Black youth are at risk for suicide because mental health stigmas in their communities result in them keeping their distress to themselves. Other researchers (Sharma & Pumariega, 2018) have echoed the concern that guilt and/or shame about suicidal ideation may result in isolation in youth of color, including those from Black, Latinx, Asian, and other cultural groups. Another cultural objection in youth of color that may serve as a protective factor is culturally informed beliefs about death and the afterlife (Sharma & Pumariega, 2018). School counselors can focus on “normalizing suicidal ideation and acceptance of internal and external problematic events” (Murrell et al., 2014, p. 43) and on ways to include family members and other cultural representatives who are accepting of mental health issues in suicide-related conversations and programs with students of color.

R: Reasons to Live and Restricted Means
     A fourth protective factor refers to two areas: reasons to live and restricted means (R). Reasons for living (RFL) are considered drives one might have for staying alive when contemplating suicide (Linehan et al., 1983). Bakhiyi et al. (2016) established in a systematic review of research literature that RFL serve as protective factors against suicidal ideation and suicide attempts in adolescents and adults. In a study with over 1,000 Chinese adolescents, the correlation between entrapment and suicidal ideation was moderated by RFL; adolescents with a higher RFL score had lower suicidal ideation even when experiencing high levels of entrapment (Ren et al., 2019). School counselors might consider giving students the RFL Inventory when presenting on suicide prevention or assessing for suicidal ideation, either the adolescent version (Osman et al., 1998) or the brief adolescent version (Osman et al., 1996). School counselors can also heighten students’ awareness of their RFL by asking them what or whom they currently cherish most or would miss or worry about if they suddenly went away.

The second part of this protective factor is restriction (R) of lethal suicide means, such as firearms, poisons, and medications (Cureton & Fink, 2019). There is evidence to support that restriction of means is effective for decreasing suicide (Barber & Miller, 2014; Kolves & Leo, 2017; Yip et al., 2012). For children and adolescents ages 10–19, the most frequent suicide method was hanging, followed by poisoning by pesticides for females and firearms for males. These findings were based on 86,280 suicide cases from 101 countries from 2000–2009 (Kolves & Leo, 2017).

Given this information, it is important for school counselors to not only assess for lethal weapons access but also to inquire about students’ access to and awareness of how everyday items might be used to attempt suicide. Although it may be impossible to restrict all means that could be utilized for hanging or poisoning, school counselors can discuss with guardians various ways to reduce access to these means and provide more supervision for any youth exhibiting thoughts of suicide. Kolves and Leo (2017) also discussed the high number of youth who learn about ways to attempt suicide from media and the internet; therefore, restriction, reduction, and supervision of media and internet usage could also be something school counselors suggest to guardians.

E: Engaged Care
     Another protective factor across populations is engagement (E) with caring professionals (Cureton & Fink, 2019; SPRC & Rodgers, 2011). School counselors often have hundreds of students on their caseloads, and this can become overwhelming, especially when dealing with crises such as suicide. At the same time, it is imperative that school counselors actively engage with students in a caring and supportive way. Often the school counselor might be the first person to intervene with a suicidal youth; Cureton and Fink (2019) emphasized the importance of the client being able to feel empathy and care from the counselor.

School counselors can view engaged care as an effective and collaborative approach for suicide prevention by working with students and families to leverage a variety of services. According to Ungar et al. (2019), “Students who reported high levels of connectedness to school also reported significantly lower rates of binge drinking, suicide attempts, and poor physical health compared to youth with low scores on school engagement” (p. 620). However, school counselors cannot be solely responsible for the ongoing engaged care of suicidal youth and will need to make referrals to outside counselors and/or physicians. Comprehensive engaged care might include mental health treatment and ongoing support and management from health care providers (Brown et al., 2005; Fleischmann et al., 2008; Linehan et al., 2006). Researchers found that comprehensive services that connect parents, schools, and communities result in decreased suicide attempts when compared to hospitalization for youth (Ougrin et al., 2013).

S: Support
     The final element of the SHORES mnemonic emphasizes the importance of students having supportive (S) environments and relationships (Cureton & Fink, 2019). As mentioned above, the school counselor is only one source of support. The support and involvement of family can also serve as a protective factor (Jordan et al., 2012). Diamond et al. (2019) noted that “when adolescents view parents as sensitive, safe, and available, they are more likely to turn to parents for support that can buffer against common triggers for depressive feelings and suicide ideation” (p. 722).

In a study with 176 Malaysian adolescents, support from family and friends was found to be a protective factor against suicidal ideation (Ibrahim et al., 2019). Youth seek support for suicidal thoughts from peers more than from adults (Gould et al., 2009; Michelmore & Hindley, 2012; Wyman et al., 2010). Many suicide prevention programs, such as Hope Squads and Sources of Strength, are addressing the need for positive peer support by incorporating a peer-to-peer component into their interventions (Wright-Berryman et al., 2019; Wyman et al., 2010). Working to increase peer support along with support from school personnel, family, and community could be lifesaving for students contemplating suicide.

Case Example Applying SHORES

The SHORES tool is meant to be comprehensive and can be used in classroom guidance, small-group, and individual counseling. A case example is provided for how SHORES might be employed in a middle school setting; however, this example could be adapted to work with elementary or high school students.

A middle school counselor attended a training on SHORES and incorporates this into her comprehensive school counseling program. Each year when she delivers her lessons on suicide prevention, she brings the SHORES poster to each classroom and shares with her students about protective factors and ways to reach out and seek help if they have a concern about suicide.

During her second lesson on suicide prevention, the school counselor notices that one of her new seventh-grade students, Jesse, seems unusually withdrawn and disengaged. The counselor is reviewing skills and strategies for coping (S) and asks each of the students to write down three to four ways that they have learned to cope with stress. In addition, she asks them to report how well each of these strategies and coping skills are working for them on a scale of 1–10. When she collects the papers, she notices that Jesse has written only one coping skill: “Locking myself in my room away from all of the noise and the pain.” He then stated his coping skill “is a 10 and works great because people will just forget about me and I can disappear.”

The school counselor is concerned about these remarks and decides to bring Jesse in for an individual counseling session. As she is asking Jesse about whether he has hope (H) that things will get better, she learns that his father has been deployed for the past year, his mother recently went to prison, and his grandmother, who is his primary guardian, had a recent health scare. Jesse shares that he is afraid he is going to lose the people closest to him and he feels angry and alone. He states that being a “military brat” who is new to the school makes him feel even more isolated, and he worries what others will think if they find out his mom is a felon.

When the school counselor expresses her concern for his safety and asks if he has ever thought about killing himself, Jesse is adamant that suicide is against his religion and he would never do it. He adds, “My mom would break out of jail and whoop me if she even knew I had thoughts like that.” Although Jesse voices his objections (O) and denies any current suicidal ideation, the school counselor is concerned about his social–emotional well-being and suggests he join a small counseling group she has for students experiencing changes in their families. Jesse agrees to check it out and gets his grandmother to sign a permission form for him to attend.

During his first small counseling group, Jesse is quiet but does confide in the group what is happening in his family and that he has been feeling “depressed.” Two of the other group members share that they also feel depressed. The school counselor asks them to define what they mean by feeling depressed. As they answer, she creates a list on the board of their definitions: “I feel hopeless and alone,” “I sometimes don’t know why I’m even here,” and “Sometimes I want to just fall asleep and never wake up.”

After they explore these definitions and the underlying feelings, the school counselor writes “Reasons to Live” (R) on the whiteboard. She shares that sometimes when kids are feeling depressed or hopeless, it can be helpful to think about the different reasons that they want to live and things they enjoy about their lives. She gives the students time to come up with lists and keeps track of what each of the students came up with during the brainstorming session. Although all of the other students in the group are able to come up with four to five reasons to live, the school counselor notes that Jesse only came up with one: “I get to visit my mom each Sunday.”

The school counselor decides to keep Jesse a few minutes after group to check in on his safety again. First, she asks him if he had other reasons to live before he moved to his new school. Jesse said that he used to play soccer and that he loved it and it made him feel excited each day to be part of the team. The school counselor encourages Jesse to look into joining the school soccer team and offers to talk to the coach to see if this is a possibility.

When asked about suicidal ideation, he is again adamant that he would never do it, but he admits that a couple of years ago it did occur to him that he could take his grandfather’s gun and “end it all.” The school counselor discovers that Jesse’s grandmother kept her late husband’s gun at her house. After discussing this with Jesse and getting his consent to contact his grandmother, she decides to err on the side of caution and follow up. Jesse’s grandmother shares that she does not believe the gun even works anymore and that there are no bullets in the home. However, after speaking with the school counselor about restricting means (R) she decides to donate the gun to a local hunting club.

During this conversation, the grandmother also shares that she is concerned about Jesse, especially his lack of a male role model. She shares that Jesse’s biological father is active military and might only see Jesse once or twice a year, and his grandfather died when he was 2. The school counselor lets the grandmother know that she plans to contact the soccer coach (who is male) about getting Jesse to join the team. After some further conversation, the school counselor and grandmother agree that it would also be helpful for Jesse to have some ongoing engaged care (E) with a counselor outside of school. She also inquires about the family’s religious affiliation because Jesse has mentioned to her that this is important to him. The school counselor compiles a list of Christian male counselors and sends the list home at the end of the day.

Over the next few weeks, Jesse continues to attend the small group. He joined the soccer team and has also been working with an outside counselor. He reports he is feeling more hopeful, even though he still worries about his mom and misses her. The school counselor delivered a classroom lesson on sources of support (S) earlier that week and follows up with each of the students during group. Each member creates a list of current sources of support in their lives and shares it. The school counselor notes that Jesse’s paper is filled with names of people both in and outside of school; he has listed friends at school, on his soccer team, and in his neighborhood; his soccer coach; his mother and grandmother; a neighbor; two teachers; and both of his counselors.

As the small group begins to wrap up toward the end of the school year, the school counselor checks in with Jesse for an individual counseling session. She reminds him about their classroom lesson on skills and strategies for coping (S). Jesse shares that he and his other counselor have been working a lot on mindfulness and that he really enjoys this. With his counselor’s encouragement, Jesse has also pursued a few new interests such as joining a club for military kids and joining an after-school program. When the school counselor revisits the question about reasons to live (R), Jesse shares that he needs more than one sheet of paper to write down all the good things in his life. The school counselor follows up with Jesse’s grandmother to share these updates and promises to continue engaged care (E) with Jesse when he returns for eighth grade.

Implications for School Counseling Practice, Training, and Research

There are implications for the use of and research on this promising tool across counseling specialties, and we focus on school settings in alignment with the scope of this manuscript. Guidelines and recommendations for school counseling practice concerning suicide include attending to both risk factors and protective factors in work with students via comprehensive suicide prevention (ASCA, 2019; Granello & Zyromski, 2018). The SHORES tool has utility as a standard and recognizable component for a comprehensive school suicide prevention program; an adjunct to current interventions such as risk screening and safety planning measures; and a strengths-based framework for prevention, intervention, and postvention. Future research is necessary to explore these applications and their impact.

Although some school suicide prevention programs address suicide protective factors, SHORES offers school counselors a simple and practical tool that they can apply across behavioral elements of a comprehensive school counseling program (ASCA, 2019). This consistent integration may support deeper understanding and broader use among school counselors and other faculty/staff, as well as students. The case example illustrated how SHORES may be applied and useful in classroom, small-group, and individual settings.

School counselors may use interventions such as risk screening and safety planning, and SHORES can fill the gap for suicide protective factors in both. Most suicide risk screening focuses solely on risk factors or does not fully explore suicide protective factors (McGlothlin et al., 2016). The most well-known safety plan template (Stanley & Brown, 2012) does not include all elements of the SHORES mnemonic (Cureton & Fink, 2019). School counselors who add SHORES to their risk screens and safety plans will be engaging in more comprehensive and protective interventions for students who may be at risk for suicide.

SHORES derives from a positive, strengths-based mindset regarding suicide prevention, intervention, and postvention. School counselors can use the tool to guide wellness programming before a suicide by considering how current and future efforts serve to enhance each element of the acronym. School counselors are also key to suicide postvention or response following a suicide (AFSP & SPRC, 2018). A school’s suicide postvention plan has three aims (Fineran, 2012), and embedding SHORES into the plan may help minimize distress, reduce contagion, and ease the return to school routines in place before the crisis. Additionally, the SHORES tool addresses several of the assets and barriers for successful school reintegration after a student’s psychiatric hospitalization (Clemens et al., 2011), so potential applications also include postvention after suicide attempts.

There are also training implications for SHORES in counselor education and supervision and practitioner professional development. Although school counselors’ training on suicide appears to have improved over the last 25 years, Gallo (2018) found that only 50% of high school counselors felt adequately prepared to identify suicidal students and assess their risk. Counselors-in-training have described the specific need for more training on child and adolescent suicide assessment (Cureton &
Sheesley, 2017). Counselors-in-training (Cureton & Sheesley, 2017) and educators (Cureton et al., 2018)
have also acknowledged the benefit of practicing suicide response in supervised counseling (i.e., internship), as well as the potential to miss opportunities simply because no clients present with suicide risk during such experiences. However, a recent assessment (Cureton et al., 2018) demonstrated that the counselor education and supervision field has only modest readiness to address the issue of suicide in its master’s-level training programs, in part because of negative views about suicide as a topic that is too scary, serious, advanced, and taxing to cover in class (Cureton et al., in press).

The strengths-based, preventative nature of SHORES positions it as a tool that can be easily introduced in classroom role-plays as well as during conversations with students being served during practicum and internship. Reframing these conversations, and more broadly all suicide-related efforts in counseling, as both challenging and potentially positive and life-affirming may partially address the negative stigma within and beyond the counselor education and supervision field (Cureton et al., 2018, in press). Finally, adding SHORES to existing school personnel training offerings like those listed by the SPRC (2019a) would deepen professional development for school counselors and other staff, faculty, and administration.

Future Research
     Despite the numerous possibilities to apply the SHORES tool in K–12 and other educational settings (Cureton & Fink, 2019), research is needed to establish its utility and effectiveness. Primary investigations include studies with school counselors who are considering adopting and implementing SHORES in their schools to understand perceptions of its apparent value and barriers to use. Evaluative studies about training offerings and investigations into memory recall of acronym components among school counselors would also aid in conceptualization of true functionality of the SHORES tool.

Research on students’ perceptions and outcomes studies are also needed. Students’ reactions to and generalized use of the SHORES tool would be beneficial in order to examine its appeal, as would those of families, teachers, and stakeholders. It is also important to explore how to be developmentally appropriate across grade levels. Finally, outcomes studies on SHORES for prevention, intervention, and postvention are necessary to determine its practical worth. For instance, a comparison between a school counseling department’s existing safety planning procedure and a SHORES-enhanced procedure would be valuable. Studies about SHORES and counselor self-efficacy to address suicide would also add to the literature.

Conclusion

As rates of youth suicide have increased in recent years, the need for school counselors to adopt tools to better assess suicide risk in their students has taken on more urgency. SHORES provides a strengths-based assessment tool that can be used by school counselors to quickly examine the protective factors that potentially mitigate against suicide in their students. Offering a comprehensive overview of existential, behavioral, and interpersonal factors that have been identified as bolstering defenses against suicidality, each letter of the SHORES acronym is rigorously supported by research and provides clear implications for the tool’s utility in K–12 settings. Given that only roughly half of school counselors feel sufficiently prepared to assess suicide risk in their students, the SHORES tool provides a practical resource for screening and safety planning. Even so, more research is needed to illustrate and verify the SHORES tool’s ease of use and adoption into other existing school-based approaches to addressing suicide in student populations.

 

Conflict of Interest and Funding Disclosure
The authors reported no conflict of interest
or funding contributions for the development
of this manuscript.

 

References

American Foundation for Suicide Prevention, American School Counselor Association, National Association of School Psychologists, & The Trevor Project. (2019). Model school district policy on suicide prevention: Model language, commentary, and resources (2nd ed). https://afsp.org/model-school-policy-on-suicide-prevention

American Foundation for Suicide Prevention, & Suicide Prevention Resource Center. (2018). After a suicide: A toolkit for schools (2nd ed.). Education Development Center, Inc. https://sprc.org/resources-programs/after-suicide-toolkit-schools

American School Counselor Association. (2016). Ethical standards for school counselors. https://www.school
counselor.org/getmedia/f041cbd0-7004-47a5-ba01-3a5d657c6743/Ethical-Standards.pdf

American School Counselor Association. (2019). ASCA school counselor professional standards & competencies.
https://www.schoolcounselor.org/getmedia/a8d59c2c-51de-4ec3-a565-a3235f3b93c3/SC-Competencies.pdf

Bakhiyi, C. L., Calati, R., Guillaume, S., & Courtet, P. (2016). Do reasons for living protect against suicidal thoughts and behaviors? A systematic review of the literature. Journal of Psychiatric Research, 77, 92–108. https://doi.org/10.1016/j.jpsychires.2016.02.019

Barber, C. W., & Miller, M. J. (2014). Reducing a suicidal person’s access to lethal means of suicide: A research agenda. American Journal of Preventive Medicine, 47(3S2), S264–S272. https://doi.org/10.1016/j.amepre.2014.05.028

Berk, M. S., Henriques, G. R., Warman, D. M., Brown, G. K., & Beck, A. T. (2004). A cognitive therapy intervention for suicide attempters: An overview of the treatment and case examples. Cognitive and Behavioral Practice, 11(3), 265–277. https://doi.org/10.1016/S1077-7229(04)80041-5

Broderick, P. C., & Jennings. P. A. (2012). Mindfulness for adolescents: A promising approach to supporting emotion regulation and preventing risky behavior. New Directions for Youth Development, 2012(136), 111–126. https://doi.org/10.1002/yd.20042

Brown, G. K., Have, T. T, Henriques, G. R., Xie, S. X., Hollander, J. E., & Beck, A. T. (2005). Cognitive therapy for the prevention of suicide attempts. JAMA, 294(5), 563–570. https://doi.org/10.1001/jama.294.5.563

Centers for Disease Control and Prevention. (2017). WISQARS. Web-based injury statistics query and reporting system. https://www.cdc.gov/injury/wisqars/index.html

Cha, C. B., Franz, P. J., Guzmán, E. M., Glenn, C. R., Kleiman, E. M., & Nock, M. K. (2018). Annual research review: Suicide among youth – Epidemiology, (potential) etiology, and treatment. Journal of Child Psychology and Psychiatry, 59(4), 460–482. https://doi.org/10.1111/jcpp.12831

Clemens, E. V., Welfare, L. E., & Williams, A. M. (2011). Elements of successful school reentry after psychiatric hospitalization. Preventing School Failure: Alternative Education for Children and Youth, 55(4), 202–213. https://doi.org/10.1080/1045988X.2010.532521

Cureton, J. L., Clemens, E. V., Henninger, J., & Couch, C. (2018). Pre-professional suicide training for counselors: Results of a readiness assessment. International Journal of Mental Health and Addiction, 18, 27–40. https://doi.org/10.1007/s11469-018-9898-4

Cureton, J. L., Clemens, E. V., Henninger, J., & Couch, C. (in press). Readiness of counselor education and supervision for suicide training: A CQR study. Journal of Counselor Preparation and Supervision, 14(3).

Cureton, J. L., & Fink, M. (2019). SHORES: A practical mnemonic for suicide protective factors. Journal of Counseling & Development, 97(3), 325–335. https://doi.org/10.1002/jcad.12272

Cureton, J. L., & Sheesley, A. P. (2017). Suicide competencies: Stories from counseling interns. Journal of Professional Counseling: Practice, Theory & Research, 44(2), 14–31. https://doi.org/10.1080/15566382.2017.12069188

Curtin, S. C., & Heron, M. (2019). Death rates due to suicide and homicide among persons aged 10–24: United States, 2000–2017. NCHS Data Brief, no 352. National Center for Health Statistics.

Davidson, C. L., Wingate, L. R., Rasmussen, K. A., & Slish, M. L. (2009). Hope as a predictor of interpersonal suicide risk. Suicide and Life-Threatening Behavior, 39(5), 499–507. https://doi.org/10.1521/suli.2009.39.5.499

Diamond, G. S., Kobak, R. R., Krauthamer Ewing, E. S., Levy, S. A., Herres, J. L., Russon, J. M., & Gallop, R. J. (2019). A randomized controlled trial: Attachment-based family and nondirective supportive treatments for youth who are suicidal. Journal of the American Academy of Child & Adolescent Psychiatry, 58(7), 721–731. https://doi.org/10.1016/j.jaac.2018.10.006

Dunning, D. L., Griffiths, K., Kuyken, W., Crane, C., Foulkes, L., Parker, J., & Dalgleish, T. (2019). Research review: The effects of mindfulness-based interventions on cognition and mental health in children and adolescents – A meta-analysis of randomized controlled trials. Journal of Child Psychology and Psychiatry, 60(3), 244–258. https://doi.org/10.1111/jcpp.12980

Early, K. E., & Akers, R. L. (1993). “It’s a white thing”: An exploration of beliefs about suicide in the African-American community. Deviant Behavior, 14(4), 277–296. https://doi.org/10.1080/01639625.1993.9967947

Fineran, K. R. (2012). Suicide postvention in schools: The role of the school counselor. Journal of Professional Counseling: Practice, Theory & Research, 39(2), 14–28. https://doi.org/10.1080/15566382.2012.12033884

Fleischmann, A., Bertolote, J. M., Wasserman, D., De Leo, D., Bolhari, J., Botega, N. J., De Silva, D., Phillips, M., Vijayakumar, L., Värnik, A., Schlebusch, L., & Thanh, H. T. T. (2008). Effectiveness of brief intervention and contact for suicide attempters: A randomized controlled trial in five countries. Bulletin of the World Health Organization, 86(9), 703–709. https://doi.org/10.2471/BLT.07.046995

Flook, L., Smalley, S. L., Kitil, M. J., Galla, B. M., Kaiser-Greenland, S., Locke, J., Ishijima, E., & Kasari, C. (2010). Effects of mindful awareness practices on executive functions in elementary school children. Journal of Applied School Psychology, 26, 70–95. https://doi.org/10.1080/15377900903379125

Fredrickson, B. L., & Joiner, T. (2002). Positive emotions trigger upward spirals toward emotional well-being. Psychological Sciences, 13(2), 172–175. https://doi.org/10.1111/1467-9280.00431

Gallo, L. L. (2018). The relationship between high school counselors’ self-efficacy and conducting suicide risk assessments. Journal of Child and Adolescent Counseling, 4(3), 209–225.
https://doi.org/10.1080/23727810.2017.1422646

Gould, M. S., Klomek, A. B., & Batejan, K. (2009). The role of schools, colleges and universities in suicide prevention. In D. W. Wasserman & C. Wasserman (Eds.), Oxford textbook of suicidiology and suicide prevention: A global perspective (pp. 551–560). Oxford University Press.

Granello, P. F., & Zyromski, B. (2018). Developing a comprehensive school suicide prevention program. Professional School Counseling, 22(1), 1–11. https://doi.org/10.1177/2156759X18808128

Huen, J. M. Y., Ip, B. Y. T., Ho, S. M. Y., & Yip, P. S. F. (2015). Hope and hopelessness: The role of hope in buffering the impact of hopelessness on suicidal ideation. PLoS ONE, 10(6), 1–18.
https://doi.org/10.1371/journal.pone.0130073

Ibrahim, N., Che Din, N., Ahmad, M., Amit, N., Ghazali, S. E., Wahab, S., Kadir, N., Halim, F. W., & Halim, M. (2019). The role of social support and spiritual wellbeing in predicting suicidal ideation among marginalized adolescents in Malaysia. BMC Public Health, 19(1), 1–9. https://doi.org/10.1186/s12889-019-6861-7

Jobes, D. A., Vergara, G. A., Lanzillo, E. C., & Ridge-Anderson, A. (2019). The potential use of CAMS for suicidal youth: Building on epidemiology and clinical interventions. Children’s Health Care, 48(4), 444–468. https://doi.org/10.1080/02739615.2019.1630279

Jordan, J., McKenna, H., Keeney, S., Cutcliffe, J., Stevenson, C., Slater, P., & McGowan, I. (2012). Providing meaningful care: Learning from the experiences of suicidal young men. Qualitative Health Research, 22(9), 1207–1219. https://doi.org/10.1177/1049732312450367

Kolves, K., & Leo, D. (2017). Suicide methods in children and adolescents. European Child & Adolescent Psychiatry, 26(2), 155–164. https://doi.org/10.1007/s00787-016-0865-y

Kwok, S. Y. C. L., & Gu, M. (2019). Childhood neglect and adolescent suicidal ideation: A moderated mediation model of hope and depression. Prevention Science, 20(5), 632–642. https://doi.org/10.1007/s11121-018-0962-x

Lanzillo, E. C., Horowitz, L. M., & Pao, M. (2018). Suicide in children. In T. Falcone & J. Timmons-Mitchell (Eds.), Suicide prevention: A practical guide for the practitioner (pp. 73–107). https://doi.org/10.1007/978-3-319-74391-2

Lapierre, S., Dubé, M., Bouffard, L., & Alain, M. (2007). Addressing suicidal ideations through the realization of meaningful personal goals. Crisis: The Journal of Crisis Intervention and Suicide Prevention, 28(1), 16–25. https://doi.org/10.1027/0227-5910.28.1.16

Law, K. C., Khazem, L. R., & Anestis, M. D. (2015). The role of emotion dysregulation in suicide as considered through the ideation to action framework. Current Opinion in Psychology, 3, 30–35.
https://doi.org/10.1016/j.copsyc.2015.01.014

Lawrence, R. E., Oquendo, M. A., & Stanley, B. (2016). Religion and suicide risk: A systematic review. Archives of Suicide Research, 20(1), 1–21. https://doi.org/10.1080/13811118.2015.1004494

Linehan, M. M., Comtois, K. A., Murray, A. M., Brown, M. Z., Gallop, R. J., Heard, H. L., Korslund, K. E., Tutek, D. A., Reynolds, S. K., & Lindenboim, N. (2006). Two-year randomized controlled trial and follow-up of dialectical behavior therapy vs. therapy by experts for suicidal behaviors and borderline personality disorder. Archives of General Psychiatry, 63(7), 757–766. https://doi.org/10.1001/archpsyc.63.7.757

Linehan, M. M., Goodstein, J. L., Nielsen, S. L., & Chiles, J. A. (1983). Reasons for staying alive when you are thinking of killing yourself: The Reasons for Living Inventory. Journal of Consulting and Clinical Psychology, 51(2), 276–286. https://doi.org/10.1037//0022-006x.51.2.276

Lizardi, D., Dervic, K., Grunebaum, M. F., Burke, A. K., Mann, J. J., & Oquendo, M. A. (2008). The role of moral objections to suicide in the assessment of suicidal patients. Journal of Psychiatric Research, 42(10), 815–821. https://doi.org/10.1016/j.jpsychires.2007.09.007

McGlothlin, J., Page, B., & Jager, K. (2016). Validation of the SIMPLE STEPS model of suicide assessment. Journal of Mental Health Counseling, 38(4), 298–307. https://doi.org/10.17744/mehc.38.4.02

Michelmore, L., & Hindley, P. (2012). Help-seeking for suicidal thoughts and self-harm in young people: A systematic review. Suicide and Life-Threatening Behavior, 42(5), 507–524.
https://doi.org/10.1111/j.1943-278X.2012.00108.x

Murrell, A. R., Al-Jabari, R., Moyer, D., Novamo, E., & Connally, M. L. (2014). An acceptance and commitment therapy approach to adolescent suicide. International Journal of Behavioral Consultation and Therapy, 9(3), 41–46. https://doi.org/10.1037/h0101639

Osman, A., Downs, W. R., Kopper, B. A., Barrios, F. X., Baker, M. T., Osman, J. R., Besett, T. M., & Linehan, M. M. (1998). The Reasons for Living Inventory for Adolescents (RFL-A): Development and psychometric properties. Journal of Clinical Psychology, 54(8), 1063–1078.
https://doi.org/10.1002/(SICI)1097-4679(199812)54:8<1063::AID-JCLP6>3.0.CO;2-Z

Osman, A., Kopper, B. A., Barrios, F. X., Osman, J. R., Besett, T., & Linehan, M. M. (1996). The Brief Reasons for Living Inventory for Adolescents (BRFL-A). Journal of Abnormal Child Psychology, 24(4), 433–443.
https://doi.org/10.1007/BF01441566

Ougrin, D., Zundel, T., Ng, A. V., Habel, B., & Latif, S. (2013). Teaching therapeutic assessment for self-harm in adolescents: Training outcomes. Psychology and Psychotherapy: Theory, Research and Practice, 86(1), 70–85. https://doi.org/10.1111/j.2044-8341.2011.02047.x

Pisani, A. R., Wyman, P. A., Petrova, M., Schmeelk-Cone, K., Goldston, D. B., Xia, Y., & Gould, M. S. (2013). Emotion regulation difficulties, youth–adult relationships, and suicide attempts among high school students in underserved communities. Journal of Youth and Adolescence, 42(6), 807–820.
https://doi.org/10.1007/s10964-012-9884-2

Ren, Y., You, J., Lin, M.-P., & Xu, S. (2019). Low self-esteem, entrapment, and reason for living: A moderated mediation model of suicidal ideation. International Journal of Psychology, 54(6), 807–815.
https://doi.org/10.1002/ijop.12532

Sharma, N., & Pumariega, A. J. (2018). Culturally informed treatment of suicidality with diverse youth: General principles. In A. Pumariega & N. Sharma (Eds.), Suicide among diverse youth: A case-based guidebook (pp. 21–30). Springer.

Sheftall, A. H., Asti, L., Horowitz, L. M., Felts, A., Fontanella, C. A., Campo, J. V., & Bridge, J. A. (2016). Suicide in elementary school-aged children and early adolescents. Pediatrics, 138(4).
https://doi.org/10.1542/peds.2016-0436

Smith-Augustine, S. (2011). School counselors’ comfort and competence with spirituality issues. Counseling & Values, 55(2), 149–156. https://doi.org/10.1002/j.2161-007X.2011.tb00028.x

Sources of Strength. (2017). Strength specific campaigns. https://sourcesofstrength.org/strength-specific-campaigns

Stanley, B., & Brown, G. K. (2012). Safety planning intervention: A brief intervention to mitigate suicide risk. Cognitive and Behavioral Practice, 19(2), 256–264. https://doi.org/10.1016/j.cbpra.2011.01.001

Suicide Prevention Resource Center. (2019a). Preventing suicide: A community engagement toolkit. https://www.sprc.org/resources-programs/preventing-suicide-community-engagement-toolkit

Suicide Prevention Resource Center. (2019b). Understanding risk and protective factors for suicide: A primer for preventing suicide. https://www.sprc.org/resources-programs/understanding-risk-protective-factors-suicide-primer-preventing-suicide

Suicide Prevention Resource Center, & Rodgers, P. (2011). Understanding risk and protective factors for suicide: A primer for preventing suicide. http://www.sprc.org/sites/default/files/migrate/library/RiskProtectiveFactorsPrimer.pdf

Taliaferro, L. A., & Muehlenkamp, J. J. (2014). Risk and protective factors that distinguish adolescents who attempt suicide from those who only consider suicide in the past year. Suicide and Life-Threatening Behavior, 44(1), 6–22. https://doi.org/10.1111/sltb.12046

Tucker, R. P., Wingate, L. R., O’Keefe, V. M., Mills, A. C., Rasmussen, K., Davidson, C. L., & Grant, D. M. (2013). Rumination and suicidal ideation: The moderating roles of hope and optimism. Personality and Individual Differences, 55(5), 606–611. https://doi.org/10.1016/j.paid.2013.05.013

Ungar, M., Connelly, G., Liebenberg, L., & Theron, L. (2019). How schools enhance the development of young people’s resilience. Social Indicators Research, 145(2), 615–627. https://doi.org/10.1007/s11205-017-1728-8

U.S. Department of Health and Human Services, Office of the Surgeon General and National Action Alliance for Suicide Prevention. (2012). 2012 national strategy for suicide prevention: Goals and objectives for action. www.ncbi.nlm.nih.gov/books/NBK109917

Villares, E., Lemberger, M., Brigman, G., & Webb, L. (2011). Student Success Skills: An evidence-based school counseling program grounded in humanistic theory. Journal of Humanistic Counseling, 50(1), 42–55. https://doi.org/10.1002/j.2161-1939.2011.tb00105.x

Wai, C. M., Talib, M. A., Yaacob, S. N., Tan, J.-P., Awang, H., Hassan, S., & Ismail, Z. (2014). Hope and its relation to suicidal risk behaviors among Malaysian adolescents. Asian Social Science, 10(12), 67–71. https://doi.org/10.5539/ass.v10n12p67

Walker, R. (2020, January 17). Black kids and suicide: Why are rates so high, and so ignored? The Conversation. https://theconversation.com/black-kids-and-suicide-why-are-rates-so-high-and-so-ignored-127066

Ward, J. E., & Odegard, M. A. (2011). A proposal for increasing student safety through suicide prevention in schools. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 84(4), 144–149.
https://doi.org/10.1080/00098655.2011.564981

World Health Organization. (2006). Preventing suicide: A resource for counsellors. https://apps.who.int/iris/bitstream/handle/10665/43487/9241594314_eng.pdf;jsessionid=791EEAFBE71ECDD1039FCBF04E3C8711?sequence=1

Wright-Berryman, J. L., Hudnall, G., Bledsoe, C. J., & Lloyd, M. (2019). Suicide concern reporting among Utah youths served by a school-based peer-to-peer prevention program. Children & Schools, 41(1), 35–44. https://doi.org/10.1093/CS/CDY026

Wyman, P. A., Brown, C. H., LoMurray, M., Schmeelk-Cone, K., Petrova, M., Yu, Q., Walsh, E., Tu, X., & Wang, W. (2010). An outcome evaluation of the Sources of Strength suicide prevention program delivered by adolescent peer leaders in high schools. American Journal of Public Health, 100(9), 1653–1661.
https://doi.org/10.2105/AJPH.2009.190025

Wyman, P. A., Gaudieri, P. A., Schmeelk-Cone, K., Cross, W., Brown, C. H., Sworts, L., West, J., Burke, K. C., & Nathan, J. (2009). Emotional triggers and psychopathology associated with suicidal ideation in urban children with elevated aggressive-disruptive behavior. Journal of Abnormal Child Psychology, 37(7), 917–928. https://doi.org/10.1007/s10802-009-9330-4

Yip, P. S. F., Caine, E., Yousuf, S., Chang, S.-S., Wu, K. C.-C., & Chen, Y.-Y. (2012). Means restriction for suicide prevention. The Lancet, 379(9834), 2393–2399. https://doi.org/10.1016/S0140-6736(12)60521-2

 

Diane M. Stutey, PhD, NCC, LPC, RPT-S, is a licensed school counselor and an assistant professor at the University of Colorado Colorado Springs. Jenny L. Cureton, PhD, LPC (TX, CO), is an assistant professor at Kent State University. Kim Severn, MA, LPC, is a licensed school counselor and instructor at the University of Colorado Colorado Springs. Matthew Fink, MA, is a doctoral student at Kent State University. Correspondence may be addressed to Diane Stutey, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, dstutey@uccs.edu.

Examining Individual and Organizational Factors of School Counselor Burnout

Heather J. Fye, Ryan M. Cook, Eric R. Baltrinic, Andrea Baylin

Burnout is a statistically significant phenomenon for school counselors, correlated with various individual and organizational factors, which have been studied independently. Therefore, we investigated both individual and organizational factors of burnout conceptualized as a multidimensional phenomenon with 227 school counselors. Multidimensional burnout was measured by the five subscales of the Counselor Burnout Inventory, which included Exhaustion, Incompetence, Negative Work Environment, Devaluing Clients, and Deterioration in Personal Life. Using hierarchal regression analyses, we found individual and organizational factors accounted for 66.6% of the variance explained in Negative Work Environment, 38.3% of the variance explained in Deterioration in Personal Life, 36.7% of the variance explained in Incompetence, 35.1% of the variance explained in Exhaustion, and 14.0% of the variance explained in Devaluing Clients. We discuss implications of the findings for school counselors and supervisors. Identifying the multidimensions of burnout and its correlates, addressing self-care and professional vitality goals, communicating defined school counselor roles, providing mentoring opportunities, and increasing advocacy skills may help alleviate burnout.

Keywords: stress, burnout, job satisfaction, coping processes, school counselors

 

In addition to providing counseling services, school counselors are charged with performing multiple non-counseling duties in their schools (Bardhoshi et al., 2014). These multiple and competing demands place them at risk for experiencing burnout (Mullen et al., 2018). Accordingly, it is important to identify factors that contribute to burnout to promote school counselors’ psychological well-being (Kim & Lambie, 2018), which in turn reinforces school counselors’ ability to support students’ well-being (Holman et al., 2019).

Burnout is a workplace-specific complex construct characterized by feelings of exhaustion, cynicism, and detachment, and a lack of accomplishment and effectiveness (Maslach & Leiter, 2017). Others have conceptualized counselor burnout as a multidimensional construct, featuring the interaction between the individual and work environment (Lee et al., 2007). Given the complex, multidimensional, and interactional nature of burnout, the Counselor Burnout Inventory (CBI) was developed to measure the construct with five subscales: Exhaustion, Incompetence, Negative Work Environment, Devaluing Clients, and Deterioration in Personal Life (Lee et al., 2007). Specific to school counselors, Kim and Lambie (2018) suggested that burnout occurs to varying degrees across individual and organizational factors. Individual factors include perceived stress (Fye et al., 2018; Mullen et al., 2018; Mullen & Gutierrez, 2016; Wilkerson, 2009; Wilkerson & Bellini, 2006) and coping processes (Fye et al., 2018; Wilkerson, 2009; Wilkerson & Bellini, 2006). Organizational factors include perceived job satisfaction (Baggerly & Osborn, 2006; Bryant & Constantine, 2006; Mullen et al., 2018) and role stress (Bardhoshi et al., 2014; Coll & Freeman, 1997; Culbreth et al., 2005).

Researchers of school counselor burnout have studied individual and organizational factors of this phenomenon using a unidimensional structure such as the CBI scale score (Mullen et al., 2018). Other researchers (e.g., Bardhoshi et al., 2014; Moyer, 2011) studied organizational factors, including caseload and administrative (non-counseling) duties, within the multidimensional structure of the CBI (Lee et al., 2007). However, researchers have not yet comprehensively studied these known individual and organizational factors within the context of a multidimensional structure of school counselor burnout. For example, Mullen et al. (2018) investigated the relationships between perceived stress, perceived job satisfaction, and school counselor burnout. However, they did not examine organizational factors such as role stress (e.g., clerical duties), which are also significant to understanding school counselor burnout (Bardhoshi et al., 2014). Thus, we sought to extend the research findings by examining several individual factors (i.e., perceived stress, coping processes) and organizational factors (i.e., perceived job satisfaction, role stress) within a multidimensional structure of school counselor burnout.

Individual Factors

Individual factors related to school counselor burnout include psychological constructs and demographic factors (Kim & Lambie, 2018). The two psychological constructs included in the current study were perceived stress (Mullen et al., 2018) and coping processes (Fye et al., 2018). Researchers have previously found contradictory results for the relationship between years of experience and school counselor burnout (Mullen et al., 2018; Wilkerson, 2009). Therefore, the factor of years of experience was included in the current study.

Perceived Stress

Perceived stress is theorized as an individual’s ability to appraise a threatening or challenging event in relation to the availability of coping resources (Lazarus & Folkman, 1984). To that end, a transactional model of stress and coping suggests that stress is a response that occurs when perceived demands exceed one’s coping abilities. For school counselors, perceived stress may occur regularly because of various factors, including non-counseling duties, excessive paperwork and administrative duties, and work overload (Bardhoshi et al., 2014).

Researchers have described a positive relationship between stress and burnout among school counselors (Mullen et al., 2018; Mullen & Gutierrez, 2016). Specifically, higher levels of stress and burnout were related to lower levels of job satisfaction and delivery of direct student services (Mullen et al., 2018; Mullen & Gutierrez, 2016). Others have reported increased emotional responses alongside increased burnout (Wilkerson & Bellini, 2006). For example, school counselors who attempted to deal with stress emotionally may be at greater risk for developing symptoms of burnout including emotional exhaustion, depersonalization, and lower levels of personal accomplishment (Wilkerson, 2009). Additionally, school counselors reported higher levels of emotional exhaustion than other mental health professionals, which can negatively impact their delivery of school counseling services (Bardhoshi et al., 2014). The correlation between stress and burnout further highlights the importance of assessing the components of stress and the ways school counselors are coping with these factors.

Coping Processes

Coping processes are defined as the cognitive and behavioral processes used to manage stressful situations (Folkman & Moskowitz, 2004). There are several coping processes, including problem-focused coping, active-emotional coping, and avoidant-emotional coping (Folkman & Lazarus, 1985). For example, problem-focused coping is defined as an action-oriented approach to stress in which one believes the stressors are controllable by personal action (Lazarus, 1993). Active-emotional coping is an adaptive response to unmanageable stressors and avoidant-emotional coping is described as a maladaptive response to those stressors (Folkman & Lazarus, 1985).

Among school counselors, Fye et al. (2018) studied the relationship between perfectionism, burnout, stress, and coping. These authors found that maladaptive perfectionists engaged more frequently in avoidant-emotional coping and relatedly experienced higher levels of burnout. Moreover, adaptive perfectionists experienced less stress and burnout and reported higher levels of problem-focused coping. Overall, for school counseling professionals, emotional-focused coping is positively related to burnout (Wilkerson, 2009). Given these findings, it is imperative for school counselors to be aware of their coping processes, including the degree to which they are affecting their levels of stress and burnout (Wilkerson, 2009).

Organizational Factors

In addition to individual factors such as stress and coping (Fye et al., 2018; Mullen et al., 2018; Wilkerson, 2009), school counseling researchers noted several organizational factors as contributing to school counselor burnout (Holman et al., 2019; Kim & Lambie, 2018). Accordingly, researchers in the current study examined organizational factors, including perceived job satisfaction and role stress (i.e., role ambiguity, role incongruity, and role conflict; Culbreth et al., 2005). Additionally, because previous researchers found a relationship between the organizational factor of school district (e.g., urban setting) and burnout (Butler & Constantine, 2005), this variable was included in the present study.

Perceived Job Satisfaction

Perceived job satisfaction refers to the degree of affective or attitudinal reactions one experiences relative to their job (Spector, 1985). Understanding the extent of school counselors’ perceived job satisfaction may be one way to buffer the effects of stress and burnout. This is because, according to Bryant and Constantine (2006), job satisfaction predicted life satisfaction for school counselors.

Perceived job satisfaction and its relationship with stress and burnout have received increased attention in the school counseling literature (Mullen et al., 2018). Among the contributing factors, higher levels of role balance and increased perceived job satisfaction resulted in greater overall life satisfaction (Bryant & Constantine, 2006). Higher perceived job satisfaction has been aligned with school counselors engaging in appropriate roles. For example, Baggerly and Osborn (2006) found that school counselors who frequently performed roles aligned with comprehensive school counseling programs were more satisfied and more committed to their careers. Similarly, higher perceived job satisfaction was directly related to the school counselor’s ability to provide direct student services within their schools (Kolodinsky et al., 2009). Conversely, school counselors who did not intend to return to their jobs the following year reported higher levels of demand and stress because of non-counseling duties, such as excessive paperwork and administrative disruptions (McCarthy et al., 2010). As a result, those who are not satisfied are at risk for disengagement (Mullen et al., 2018), while school counselors who are satisfied with their jobs may have increased student connections (Kolodinsky et al., 2009).

Role Stress

    Role stress refers to the levels of role incongruity, role conflict, and role ambiguity experienced by school counselors (Culbreth et al., 2005; Freeman & Coll, 1997). Role incongruity may occur when there are structural conflicts, including inadequate resources for school counselors and engagement in ineffective tasks (Freeman & Coll, 1997). Several authors noted that inappropriate or non-counseling duties contributed to burnout, including excessive paperwork, administrative duties, and testing coordinator roles (Bardhoshi et al., 2014; Moyer, 2011, Wilkerson, 2009). Moyer (2011) found that school counselors who engaged in increased non-counseling duties also had increased feelings of exhaustion and incompetence, had decreased feelings toward work environment, and were less likely to show empathy toward students. Furthermore, school counselors who were assigned inappropriate roles reported higher levels of frustration and resentment toward the school system. Overall, authors emphasized the importance of educating administrators on the appropriate and inappropriate roles for school counselors to decrease burnout (Bardhoshi et al, 2014; Cervoni & DeLucia-Waack, 2011; Moyer, 2011).

Role conflict occurs when school counselors experience multiple external demands from different stakeholders (Holman et al., 2019). Role conflict examples for school counselors include: (a) whether school counselors should focus on the education goals or mental health needs of students first (Paisley & McMahon, 2001) and (b) whether a school counselor should engage in an actual role given by an administration or supervisor (e.g., testing coordinator) or preferred role (e.g., classroom guidance activity; Wilkerson, 2009). As such, school counselors can feel overwhelmed and often engage in inappropriate duties, according to the American School Counselor Association (ASCA) National Model (2019). In turn, school counselors experience stress and burnout (Mullen et al., 2018).

Role ambiguity is the discrepancy between actual and preferred counseling duties (Scarborough & Culbreth, 2008). Role ambiguity has been linked to burnout because of school counselors’ stress from lacking an understanding of their professional roles and being misinformed about the realities of the job (Culbreth et al., 2005). For example, school counselors face challenges of navigating mixed messages about role expectations across stakeholders (Coll & Freeman, 1997). This confusion may lead to school counselors experiencing role ambiguity (Scarborough & Culbreth, 2008). When school counselors interact with stakeholders who have conflicting ideas about their roles, it creates stress. It is especially difficult for school counselors when stakeholders’ conceptualization of their roles clashes with what school counselors learned during graduate training (Culbreth et al., 2005). When school counselors are assigned duties that conflict with their own understandings of their roles, they are not able to operate in alignment with their professional mandates (Holman et al., 2019). Overall, school counselors experiencing role ambiguity also report higher levels of stress, both of which have been linked to burnout (Kim & Lambie, 2018).

Purpose of the Present Study
Despite prevalence in the school counseling burnout literature regarding individual and organizational factors of burnout, we were unable to locate a study that holistically researched these variables. To align our findings with a theoretical understanding of school counselor burnout, we examined these phenomena as a multidimensional construct. Additionally, we controlled for years of experience (Mullen et al., 2018; Wilkerson, 2009; Wilkerson & Bellini, 2006) and school district (Butler & Constantine, 2005). Therefore, we answered the research question: What is the relationship between individual (i.e., perceived job stress, problem-focused coping, avoidant-emotional coping, and active-emotional coping) and organizational (i.e., perceived job satisfaction, role incongruity, role conflict, and role ambiguity) factors after controlling for years of experience and school district, with the subscales of school counselor burnout: (1) Exhaustion, (2) Incompetence, (3) Negative Work Environment, (4) Devaluing Clients, and (5) Deterioration in Personal Life?

Method

Sample

A total of 227 school counselors participated in the study. Ages ranged from 26 to 69 (M = 46.21; SD = 10.26; four declined to answer). The sex of participants included females (n = 166, 73.1%) and males (n = 61, 26.9%). The race and ethnicity of participants included White (n = 185, 81.5%), African American/Black (n = 20, 8.8%), Hispanic (n = 7, 3.1%), Asian/Pacific Islander (n = 3, 1.3%), American Indian/Alaskan Native (n = 1, 0.4%), and Biracial/Multiracial (n = 9, 4.0%), and two participants (0.9%) declined to answer. Participants held a master’s degree in school counseling (n = 175, 77.1%), a PhD or EdD (n = 33, 14.5%), or a master’s degree in another counseling or mental health specialty area (n = 19, 8.4%). The years of experience ranged from 2 to 41 years (M = 13.68, SD = 7.49). Participants reported working in suburban (n = 97, 42.7%), rural (n = 76, 33.5%), and urban (n = 54, 23.8%) settings. Regarding level of practice, participants worked in an elementary school (i.e., grades K–6; n = 80, 35.2%), middle school (i.e., grades 7–8; n = 14, 6.2%), high school (i.e., grades 9–12; n = 59, 26.0%), or multiple grade levels (e.g., K–8, K–12, etc.; n = 74, 32.6%). A power analysis was completed in G*Power 3.1 before beginning the study (Faul et al., 2009). The necessary sample size was determined to be at least 200, with a power of .80, assuming a moderate effect size of .15 in the multiple regression analyses, and with an error probability or alpha of .05 (J. Cohen, 1992).

Procedures

Institutional Review Board approval was obtained prior to beginning the study. The first author sent recruitment emails to 4,000 school counselors who were professional members of the ASCA online membership directory. Specifically, approximately 20% of school counselors in each of the 50 states and District of Columbia were chosen from the membership directory to receive the recruitment emails. The emails included a brief introduction to the study and an anonymous link that took potential participants to the online survey portal in Qualtrics. Potential participants first reviewed the informed consent. Once they consented to the survey, participants completed the demographics questionnaire and instruments. A convenience sample was obtained based upon voluntary responses to the survey (Dimitrov, 2009).

Instruments

The first author constructed a brief demographics survey to gather information about the participants (e.g., age, sex, race and ethnicity, degree, and years of experience) and their work environment (e.g., school district, grade level). The Perceived Stress Scale (PSS; S. Cohen et al., 1983) and Brief COPE (Carver, 1997) were used to measure individual factors. The Job Satisfaction Survey (JSS; Spector, 1985) and Role Questionnaire (RQ; Rizzo et al., 1970) were used to measure organizational factors. The CBI (Lee et al., 2007) was used to measure the dimensions of school counselor burnout.

Perceived Stress Scale (PSS)

The PSS (S. Cohen et al., 1983) is a 14-item inventory designed to measure an individual’s perceived stress within the past month. In the present study, we used the PSS-4, which is a subset of items from the original 14-item scale. The PSS was normed on a large sample of individuals from across the United States (S. Cohen et al., 1983). Participants responded to a 5-point Likert-type scale ranging from 0 (never) to 4 (very often). Scores on the PSS-4 ranged from 0 to 20. An example question of the PSS-4 is: “In the past month, how often have you felt difficulties were piling up so high that you could not overcome them?” The PSS-4 was determined to be a suitable brief measure of stress perceptions, based upon adequate factor structure and predictive validity (S. Cohen & Williamson, 1988). Reliability has been upheld (e.g., S. Cohen & Williamson, 1988) with test-retest reliability at .85 after 2 days (S. Cohen et al., 1983). For the present study, the internal consistency reliability was calculated at α = .76. Correlations between the perceived stress total score and CBI subscales ranged from r = .19 to .55.

Brief COPE

The Brief COPE (Carver, 1997) is a 28-item inventory designed to measure coping responses or processes and includes 14 subscales. We followed previous researchers’ (e.g., Deatherage et al., 2014) grouping of the 14 subscales into three coping processes (i.e., problem-focused, active-emotional, and avoidant-emotional). Therefore, problem-focused coping contained the Active Coping, Planning, Instrumental Support, and Religion subscales. Active-emotional coping contained the Venting, Positive Reframing, Humor, Acceptance, and Emotional Support subscales. Avoidant-emotional coping contained the Self-Distraction, Denial, Behavioral Disengagement, and Self-Blame subscales. For the present study, the items pertaining to participants’ alcohol and illegal drug use as coping responses were omitted because of their sensitive nature. Therefore, 26 items were included in the present study. The inventory uses a 4-point Likert-type scale with scores ranging from 0 (I haven’t been doing this at all) to 3 (I’ve been doing this a lot). A sample item on the Brief COPE is “I’ve been turning to work or other activities to take my mind off things.” Construct validity has been upheld with the three coping processes (e.g., Deatherage et al., 2014). Test-retest reliability for the three subscale groups has been upheld over a year timespan (Cooper et al., 2008). For the present study, the internal consistency reliability was calculated for problem-focused coping at α = .84, avoidant-emotional coping at α = .70, and active-emotional coping at α = .81. Correlations between problem-focused coping and the CBI subscales ranged from r = .00 to .13, correlations between avoidant-emotional coping and CBI subscales ranged from r = .20 to .48, and correlations between active-emotional coping and CBI subscales ranged from r = .01 to .16.

Job Satisfaction Survey (JSS)

The JSS (Spector, 1985) is a 36-item inventory intended to measure an individual’s perceived job satisfaction or attitudes and aspects of the job. The JSS contains nine subscales: Pay, Promotion, Supervision, Fringe Benefits, Contingent Rewards, Operating Procedures, Coworkers, Nature of Work, and Communication. The inventory uses a 6-point Likert-type scale with scores ranging from 1 (disagree very much) to 6 (agree very much). Total scores range from 36 to 216 with the higher the score, the higher job satisfaction experienced. An example item on the JSS is “My job is enjoyable” (Spector, 1985, p. 711). The JSS was constructed for, and normed on, social service, education, and mental health professionals (Spector, 1985, 2011). Spector (1985) established convergent validity with the Job Descriptive Index (Smith et al., 1969), and produced scores ranging from .61 to .80. Strong reliability has been established for the JSS, including a Cronbach coefficient alpha of .91 for all factors combined, and at 18 months, the test-retest reliability score was .71 (Spector, 1985). For the present study, the internal consistency reliability was calculated for the total scores at α = .91. Correlations between the perceived job satisfaction total score and CBI subscales ranged from r = -.13 to -.75.

Role Questionnaire (RQ)

The RQ (Rizzo et al., 1970) is a 14-item inventory designed to measure the level of role conflict and role ambiguity an individual has about a job. The RQ has been factor analyzed with school counselors (Freeman & Coll, 1997) and found to have three distinct factors (i.e., role incongruity, role conflict, and role ambiguity). The inventory uses a 7-point Likert-type scale with scores ranging from 1 (very false) to 7 (very true). Role incongruity refers to conflicts with the structure of the system and allocation of resources (Freeman & Coll, 1997). The role incongruity factor comprises items 1–4. Total scores range from 8 to 32, with the higher the score, the higher role incongruity experienced. A sample item for role incongruity is “I receive an assignment without adequate resources and materials to execute it.” Role conflict refers to the contradictory requests of work expectations with varying groups (Freeman & Coll, 1997). The role conflict factor comprises items 5–8. The higher the score, the higher role conflict experienced, which can range from 8 to 32. A sample item for role conflict is “I receive incompatible requests from two or more people.” The role ambiguity factor, which measures a lack of clarity on the job, is negatively worded; therefore, the lower the score, the higher the role ambiguity experienced. The role ambiguity factor comprises items 9–14, and total scores range from 6 to 42. A sample item for role ambiguity is “Explanation is clear of what has to be done.” Construct validity for the three factors with school counselors was established by Freeman and Coll (1997). Reliability of the three factors have been upheld for school counselor participants (Culbreth et al., 2005; Wilkerson, 2009; Wilkerson & Bellini, 2006). For the present study, the internal consistency reliability was calculated for role incongruity at α = .82, role conflict at α = .79, and role ambiguity at α = .90. Correlations between role incongruity and CBI subscales ranged from r = .14 to .65, correlations between role conflict and CBI subscales ranged from r = .14 to .53, and correlations between role ambiguity and CBI subscales ranged from r = -.22 to -.56.

Counselor Burnout Inventory (CBI)

The CBI (Lee et al., 2007) is a 20-item inventory designed to measure counselors’ burnout levels. The CBI includes five subscales, with four questions for each subscale: Exhaustion, Incompetence, Negative Work Environment, Devaluing Clients, and Deterioration in Personal Life. The CBI uses a 5-point Likert-type scale ranging from 1 (never true) to 5 (always true). Total scores on each subscale range from 5 to 20, with the higher the score, the higher level of burnout. A sample item from the Exhaustion subscale is “Due to my job as a counselor, I feel tired most of the time.” A sample item from the Incompetence subscale is “I am not confident in my counseling skills.” A sample item from the Negative Work Environment subscale is “I am treated unfairly in my workplace.” A sample item from the Devaluing Clients subscale is “I am not interested in my clients and their problems.” A sample item from the Deterioration in Personal Life subscale is “I feel I have poor boundaries between work and my personal life.” Two independent samples composed of counselors from a variety of settings across the United States were used to explore and confirm the factor structure (Lee et al., 2007). Gnilka et al. (2015) upheld the CBI five-factor structure with a confirmatory factor analysis in a sample of school counselors. Cronbach’s alpha for the total CBI was .88, with scores ranging from .73 to .85 for the subscales (Lee et al., 2007). For the present study, internal consistency reliability for the CBI subscales were calculated and ranged from α = .78 to .89.

Results

Prior to conducting the primary analyses, we used SPSS (Version 25.0) to clean the data, impute missing data values, and test the assumptions of the primary analyses (i.e., hierarchal regressions), as recommended by Tabachnick and Fidell (2013). We used expectation-maximization (EM) to impute missing data (Cook, 2020), after we tested the randomness of the missing values with Little’s missing completely at random (MCAR). All missing values were determined to be MCAR, except for the active-emotional coping of the Brief COPE and the JSS: χ2(40, N = 227) = 79.13, p = .000, and χ2(671, N = 227) = 836.57, p = .000, respectively. Because the missing values for the active-emotional coping and JSS were less than 1%, expectation-maximization was an appropriate imputation method (Cook, 2020). Less than 5% of values were imputed for the PSS-4, the factors of the RQ (role ambiguity, role incongruity, and role conflict), and the five subscales of the CBI (Exhaustion, Incompetence, Negative Work Environment, Devaluing Clients, and Deterioration in Personal Life), and less than 1% of the values were imputed for the problem-focused and avoidant-emotional processes of the Brief COPE.

To answer the research question, we used three-step hierarchical regression models to analyze the individual and cumulative contributions for demographic, individual, and organizational factors with each subscale of the CBI. Qualities of the instruments are provided in Table 1. In Step 1, we entered the demographic factors (i.e., years of experience and school district). In Step 2, we entered the individual factors (i.e., perceived stress, problem-focused coping, avoidant-emotional coping, and active-emotional coping). In Step 3, we entered the organizational factors (i.e., perceived job satisfaction, role incongruity, role conflict, and role ambiguity). Completed assumption checks showed no outliers or influential data points, as concluded by an examination of the Q-Q plots, histograms, scatterplots, and Mahalanobis distance. We checked multicollinearity and found it to be an issue for school district (tolerance < .01). Therefore, we removed the school district variable and reentered years of experience in Step 1. To control for Type I error, we used the Bonferroni method to adjust the family-wise alpha (Darlington & Hayes, 2017), which resulted in .01 as the cutoff for statistical significance for Step 2 (i.e., individual factors) and .0056 as the cutoff for statistical significance for Step 3 (i.e., organizational factors). Results for each of these models are presented in Table 2.

 

Table 1

Qualities of Instrumentation

Instrumentation  Scores      M    SD   α
Perceived Stress Scale-4 Total Score

 

Problem-Focused Coping

 

Avoidant-Emotional Coping

 

Active-Emotional Coping

 

Job Satisfaction Scale Total Score

 

Role Ambiguity

 

Role Incongruity

 

Role Conflict

 

Exhaustion

 

Incompetence

 

Negative Work Environment

 

Devaluing Client

 

Deterioration in Personal Life

    4–19

 

8–32

 

8–24

 

10–38

 

82–204

 

7–42

 

4–28

 

4–26

 

4–20

 

4–17

 

4–20

 

4–13

 

4–19

    8.24

 

22.55

 

12.48

 

25.74

 

143.25

 

29.67

 

15.47

 

15.18

 

11.54

 

8.77

 

9.87

 

5.61

 

8.65

  2.86

 

5.29

 

3.03

 

5.56

 

25.28

 

7.25

 

5.77

 

5.58

 

3.97

 

2.96

 

3.75

 

2.08

 

3.32

.76

 

.84

 

.70

 

.81

 

.91

 

.90

 

.82

 

.79

 

.89

 

.78

 

.85

 

.80

 

.78

 

Table 2

Results of Hierarchal Regression Analyses of School Counselor Burnout

Exhaustion Incompetence Negative Work Environment Devaluing Clients Deterioration in Personal Life
Step 1
Years of Experience    -.038        -.233*        -.072      -.190*         -.047
R2     .001         .054         .005       .036          .002
F     .323     12.89**       1.17     8.46*          .500
Step 2  
Years of Experience     .030       -.151**       -.042      -.155          .001
Perceived Stress     .392**         .184         .283**       .093          .491**
Avoidant-Emotional Coping     .160         .360**         .025       .180          .103
Active-Emotional Coping     .030         .087         .026       .131          .151
Problem-Focused Coping    -.043        -.151         .081      -.229**         -.105
R2     .240         .284         .109       .116          .323
Δ R2     .239         .229         .104       .080          .321
ΔF 17.34**     17.69**       6.43**     4.98**      26.24**
Step 3
Years of Experience     .056        -.097         .052      -.125          .025
Perceived Stress     .303         .150         .057       .070          .437
Avoidant-Emotional Coping     .170         .338         .025       .165          .077
Active-Emotional Coping     .034         .126         .050       .151          .155
Problem-Focused Coping    -.064        -.180         .042      -.243         -.127
Perceived Job Satisfaction    -.198         .080        -.489       .032          .029
Role Ambiguity     .014        -.276        -.122      -.147         -.029
Role Incongruity     .207         .190         .220       .069          .172
Role Conflict   -.014        -.096         .106      -.018          .188
R2     .351         .367         .666       .140          .383
Δ R2     .111         .092         .652       .024          .060
ΔF   9.29**       8.03**     90.43**     1.51        5.26**
Note. N = 227
* p < .05. ** p < .01. p < .0056.

 

Exhaustion

The hierarchical regression model for Exhaustion revealed that years of experience was not statistically significant: F(1, 225) = .323, p > .05. Introducing individual factors explained 23.9% of the variation in Exhaustion, and this change in R2 was significant: F(5, 221) = 13.96, p < .001. The inclusion of organizational factors explained an additional 11.1% of the variation in Exhaustion, and this change in R2 was significant: F(9, 217) = 13.05, p < .001. However, the β values revealed that the only statistically significant factor of Exhaustion was perceived stress (β = .303, p < .001). Together the independent variables accounted for 35.1% of the variance in Exhaustion.

Incompetence

For Incompetence, years of experience explained 5.4% of its variation and was significant: F(1, 225) = 12.89, p < .001. Adding individual factors explained an additional 22.9% of the variation in Incompetence, and this change in R2 was significant: F(5, 221) = 17.50, p < .001. Including organizational factors explained an additional 9.2% of the variation in Incompetence, and this change in R2 was significant: F(9, 217) = 14.53, p < .001. The statistically significant factors of Incompetence were avoidant-emotional coping (β = .338, p < .001) and role ambiguity (β = -.276, p < .001). Together the independent variables accounted for 36.7% of the variance in Incompetence.

Negative Work Environment

      For Negative Work Environment, years of experience was not statistically significant: F(1,225) = 1.17, p > .05, R2 = .005. Adding individual factors explained 10.9% of the variation in Negative Work Environment, and this change in R2 was significant: F(5, 221) = 5.40, p < .001. Including organizational factors explained an additional 65.2% of the variation in Negative Work Environment, and this change in R2 was significant: F(9, 217) = 48.05, p < .001. In the final model, perceived job satisfaction (β = -.489, p = .000) and role incongruity (β = .220, p = .000) significantly explained Negative Work Environment. Together the independent variables accounted for 66.6% of the variance in Negative Work Environment.

Devaluing Clients

For Devaluing Clients, years of experience contributed significantly to the model and accounted for 3.6% of its variation: F(1, 225) = 8.46, p < .05. Including individual factors explained an additional 8.0% of the variation in Devaluing Clients, and this change in R2 was significant: F(5, 221) = 5.80, p < .01. Adding the organizational factors in the third step was significant: F(9, 217) = 3.92, p < .001, R2 = .140. However, the inclusion of the organizational variables did not explain a significantly different equation: ΔF(4, 217) = 1.51, p > .05, ΔR2 = .024. Therefore, we interpreted the β values of the second step, and the statistically significant factor of Devaluing Clients was problem-focused coping (β = -.229, p = .009).

Deterioration in Personal Life

Finally, for Deterioration in Personal Life, years of experience was not significant: F(1, 225) = .500,
p > .05, R2 = .002. Including individual factors explained 32.1% of the variation in Deterioration in Personal Life, and the change in R2 was significant: F(5, 221) = 21.14, p < .001. Including the organizational factors explained an additional 6.0% of the variation in Deterioration in Personal Life, and this change in R2 was significant: F(9, 217) = 14.98, p < .001. An examination of the β values revealed that only perceived stress was a statistically significant variable for Deterioration in Personal Life (β = .437, p = .000). Together the independent variables accounted for 38.3% of the variance in Deterioration in Personal Life.

Discussion

The present study illustrates an expanded understanding of individual and organizational factors associated with the subscales of school counselor burnout (i.e., Exhaustion, Incompetence, Negative Work Environment, Devaluing Clients, and Deterioration in Personal Life; Lee et al., 2007). We intended to control for years of experience but found that before adding the individual and organizational factors, it was a statistically significant variable and negatively related with Incompetence and Devaluing Clients. School counselor researchers have reported contradictory findings between years of experience and burnout. Similar to our findings, Wilkerson and Bellini (2006) and Mullen et al. (2018) reported a negative relationship between years of experience and burnout—essentially describing that those earlier in their careers have a higher risk of experiencing burnout. In contrast, Butler and Constantine (2005) and Wilkerson (2009) reported burnout happening over time (i.e., a positive relationship between years of experience and burnout). Our study underscores the vulnerability school counselors may experience earlier in their careers (Mullen et al., 2018). Our results also provide a unique finding in that fewer years of experience as a school counselor is associated with the burnout dimensions of Incompetence and Devaluing Clients.

In the present study, we found individual factors (i.e., perceived stress, problem-focused coping, and avoidant-emotional coping) significantly related to Exhaustion, Incompetence, Devaluing Clients, and Deterioration in Personal Life. School counselor scholars (e.g., Mullen et al., 2018; Mullen & Gutierrez, 2016) reported a statistically significant positive relationship between school counselors’ perceived stress and burnout. Our results provide unique findings in that stress was positively related with the Exhaustion and Deterioration in Personal Life dimensions of burnout. Other school counselor scholars (e.g., Bardhoshi et al., 2014; Moyer, 2011) found the stress-related variable of engagement in non-counseling duties was significantly related to Exhaustion and Deterioration in Personal Life.

For the coping processes, avoidant-emotional coping was positively related to Incompetence and problem-focused coping was negatively related to Devaluing Clients. These findings provide two distinct understandings of school counselor burnout. First, and notably, school counselor participants who were experiencing Incompetence were also engaging in increased avoidant-emotional coping. This finding is similar to those of Fye et al. (2018), who found maladaptive perfectionists were more frequently engaging in avoidant-coping processes. We did not research perfectionism in the present study; however, our findings may expand an understanding of a positive relationship between avoidant-emotional coping and burnout dimensions for school counselors regardless of perfectionism types. Second, we discovered school counselor participants’ problem-focused coping was negatively related to Devaluing Clients. This is a promising finding from our study because participants were likely to incorporate increased problem-focused coping alongside valuing students. As previously discussed, it appears that these school counselor participants were maintaining high levels of positive regard and empathy for students (Gnilka et al., 2015; Mullen & Gutierrez, 2016). Engaging in problem-focused coping may be beneficial to their engagement in student care and maintaining professional vitality.

The organizational factors of role ambiguity, role incongruity, and perceived job satisfaction were significantly related to the Incompetence and Negative Work Environment dimensions of burnout. Specifically, role ambiguity was positively related to Incompetence. Our results confirm that when school counselors’ roles are increasingly unclear, they are experiencing higher levels of burnout (Mullen et al., 2018), and specifically Incompetence. Perceived job satisfaction was negatively related to Negative Work Environment, while role incongruity was positively related to Negative Work Environment. Consistent with previous research, our findings support the significant relationships between organizational factors (i.e., administrative and clerical duties contributing to role stress) and Negative Work Environment (Bardhoshi et al., 2014). Other scholars have studied perceived job satisfaction as an outcome and potential preclusion to school counselor burnout (Baggerly & Osborn, 2006; Bryant & Constantine, 2006). School counseling scholars have found that burnout mediated the relationship between perceived stress and perceived job satisfaction (Mullen et al., 2018). In the present study, the perceived job satisfaction factor had the highest β at -.489. It appears that perceived job satisfaction is an important factor alongside school counselors’ specific experiences of Negative Work Environments. Perceived stress was a statistically significant factor in Step 2 with Negative Work Environment, but insignificant in the context of the organizational variables. This is an important finding because burnout, by definition, is a function of one’s work context (Lee et al., 2007; Maslach & Leiter, 2017), and we found that organizational factors explained a large amount of the variance (i.e., 65.2%) for the Negative Work Environment dimension of burnout. Overall, our findings support the complex and multidimensional nature of school counselor burnout.

Limitations and Future Research

     We attempted to research multidimensional burnout with a nationally representative and diverse sample of ASCA member school counselors. Despite our efforts, the response rate was 5.68%. The majority of our participants identified as White and female, which is similar to the reported demographics of professional school counselor members (ASCA, 2018). However, caution may be warranted when generalizing our findings to all school counselors. Expanding research efforts (i.e., qualitative methods) to increase understanding of the burnout experiences of school counselors unrepresented by our participant sample is warranted. Last, it is unknown whether or not participants answered sensitive questions, such as those about burnout, in a socially desirable manner.

Future research should seek to understand additional individual and organizational variables related to the burnout dimensions for school counselors (Lee et al., 2007). For example, the Devaluing Clients dimension has been viewed by school counseling scholars as a complicated construct that has functioned differently from the other dimensions of burnout (Bardhoshi et al., 2014; Mullen & Gutierrez, 2016). Additional research is needed to understand this burnout dimension with school counselors. Kim and Lambie (2018) discussed the need for research to focus on burnout interventions. We concur and believe the distinction of individual and organizational factors within the dimensions of school counselor burnout should be considered when constructing these interventions, which may be important because burnout may not be an end state; instead, it may be a mediator of other important outcomes, such as work and health (Maslach & Leiter, 2017). It may be helpful to expand research that studies relationships between school counselor burnout and physical and mental health outcomes.       

Implications for the School Counseling Profession

Our findings have implications for school counselors, school counselors-in-training, and counselor educators and supervisors. They illustrate the importance of conceptualizing the ecological relationship between individual and organizational factors with school counselor burnout. School counselors may have more control over individual factors, and supervisors may have more control over organizational factors. Despite these considerations, it is important to share the responsibility of burnout prevention within the school system. This is important because despite one’s efforts to increase helpful coping, self-care, or wellness practices, it appears that continued exposure to negative work environments will continue to place school counselors at risk for burnout.

Because school counselors are responsible for providing counseling services that align with professional and ethical standards (Kim & Lambie, 2018), it is imperative for them to recognize, monitor, and address their symptoms of burnout (ASCA, 2016). Therefore, it may be helpful for school counselors and supervisors to identify and understand the dimensions of burnout experienced and their relationships with individual and organizational factors. By using the instruments from this study, school counselors can identify contributions of individual and organizational factors with their burnout scores. This would allow supervisees to understand the relationships between these factors and burnout dimensions. During supervision, time could be dedicated to setting personal goals for maintaining self-care and professional vitality. This may be important, especially in identifying and decreasing avoidant-emotional coping, alongside increasing problem-focused coping processes. In general, school counselors should monitor their own self-care in relation to work context stressors and perceived job satisfaction. Our results may provide support to the potential limitations that wellness practices have on decreasing burnout within the Negative Work Environment (Puig et al., 2012)—meaning, wellness practices may be important in alleviating the individual factors related to burnout (i.e., high perceived stress, coping responses) but may have limited ability to decrease factors out of school counselors’ control (i.e., work context practices and policies).

Despite best practice guidelines, the reality remains that school counselors engage in various non-counseling duties (Bardhoshi et al., 2014; Gutierrez & Mullen, 2016), which contributes to role stress. To lessen organizational stressors, as early as graduate school, counselor educators and supervisors should allow space in the learning process for students to learn the various counseling and related duties expected of school counselors within the school environment. Providing learning contexts for graduate students to explore these various roles may set the stage for lessened role stress. Specifically, assignments should be included in the curriculum that allow graduate students to explore school counselors’ professional identity and the real and ideal roles of the school counselor. These discussions should be engaged in along with conversations of how these varying roles can affect burnout (specifically role incongruity and role ambiguity), especially for those earlier in their careers. These dialogues should be reinforced during the practicum and internship experiences and include personal sources of perceived job satisfaction. In schools, supervisors can help to facilitate school counselors’ competence by clearly defining expectations through measurable outcomes. For example, school counselors and supervisors can use the ASCA National Model’s (ASCA, 2019) Annual Administrative Conference Template (p. 60) and Annual Calendar Template (p. 70) to open communication between the school counselors and their supervisors and document their duties. This discussion may additionally open communication regarding the adequacy of funding, resources, materials, and staff available to school counselors (Freeman & Coll, 1997). If inadequate, school counselors may use the opportunity to advocate for increased support from supervisors and administrators.

It is important to note that in the present study, school counselors earlier in their careers reported higher levels of Incompetence and Devaluing Clients. School counselor supervisors should understand these relationships. Mentoring of school counselors who are earlier in their careers by those with significant experience may help the younger professionals build their professional identities and student-focused work. Last, recognizing dimensions of burnout in relation to individual and organizational factors may not be enough to maintain professional vitality. The school counseling profession may find it helpful to train school counselors and graduate students in advocacy skills. Trusty and Brown (2005) outlined advocacy competencies for school counselors, which include dispositional statements, knowledge, and skills necessary to becoming effective advocates. The self-advocacy model prepares school counselors to have the communication (oral and written) necessary to maintain effective advocacy roles.

Conclusion

In conclusion, our results provide an expansion of findings related to relative contributions for individual and organizational factors with school counselor multidimensional burnout. In short, burnout dimensions are uniquely related to personal and work context factors. It is difficult to conceive of burnout absent its relationship to some aspect of the work setting. School counselors and supervisors can use our results to conceptualize burnout from a multidimensional perspective, which may in turn help them find new ways to remain professionally vital to themselves, their students, and their school community.

 

Conflict of Interest and Funding Disclosure
The authors reported no conflict of interest
or funding contributions for the development
of this manuscript.

 

References

American School Counselor Association. (2016). ASCA ethical standards for school counselors. https://www.schoolcounselor.org/asca/media/asca/Ethics/EthicalStandards2016.pdf

American School Counselor Association. (2018). ASCA membership demographics. https://www.schoolcounselor.org/asca/media/asca/home/Member-Demographics.pdf

American School Counselor Association. (2019). The ASCA national model: A framework for school counseling programs (4th ed.).

Baggerly, J., & Osborn, D. (2006). School counselors’ career satisfaction and commitment: Correlates and predictors. Professional School Counseling, 9(3), 197–205. https://doi.org/10.1177/2156759X0500900304

Bardhoshi, G., Schweinle, A., & Duncan, K. (2014). Understanding the impact of school factors on school counselor burnout: A mixed-methods study. The Professional Counselor, 4(5), 426–443. https://doi.org/10.15241/gb.4.5.426

Bryant, R. M., & Constantine, M. G. (2006). Multiple role balance, job satisfaction, and life satisfaction in women school counselors. Professional School Counseling, 9(4), 265–271. https://doi.org/10.1177/2156759X0500900403

Butler, S. K., & Constantine, M. G. (2005). Collective self-esteem and burnout in professional school counselors. Professional School Counseling, 9(1), 55–62. https://doi.org/10.1177/2156759X0500900107

Carver, C. S. (1997). You want to measure coping but your protocol’s too long: Consider the Brief COPE. International Journal of Behavioral Medicine, 4(1), 92–100. https://doi.org/10.1207/s15327558ijbm0401_6

Cervoni, A., & DeLucia-Waack, J. (2011). Role conflict and ambiguity as predictors of job satisfaction in high school counselors. Journal of School Counseling, 9(1), 1–30. http://www.jsc.montana.edu/articles/v9n1.pdf

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. https://doi.org/10.1037/0033-2909.112.1.155

Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24(4), 385–396. https://doi.org/10.2307/2136404

Cohen, S., & Williamson, G. (1988). Perceived stress in a probability sample of the United States. In S. Spacapan & S. Oskamp (Eds.), The social psychology of health: The Claremont symposium on applied social psychology (2nd ed., pp. 31–67). SAGE.

Coll, K. M., & Freeman, B. (1997). Role conflict among elementary school counselors: A national comparison with middle and secondary school counselors. Elementary School Guidance & Counseling, 31(4), 251–261.

Cook, R. M. (2020). Addressing missing data in quantitative counseling research. Counseling Outcome Research and Evaluation. https://doi.org/10.1080/21501378.2019.1711037

Cooper, C., Katona, C., & Livingston, G. (2008). Validity and reliability of the Brief COPE in carers of people with dementia: The LASER-AD Study. The Journal of Nervous and Mental Disease, 196(11), 838–843. https://doi.org/10.1097/NMD.0b013e31818b504c

Culbreth, J. R., Scarborough, J. L., Banks-Johnson, A., & Solomon, S. (2005). Role stress among practicing school counselors. Counselor Education and Supervision, 45(1), 58–71. https://doi.org/10.1002/j.1556-6978.2005.tb00130.x

Darlington, R. B., & Hayes, A. F. (2017). Regression analysis and linear models: Concepts, applications, and implementation (1st ed.). Guilford.

Deatherage, S., Servaty-Seib, H. L., & Aksoz, I. (2014). Stress, coping, and internet use of college students. Journal of American College Health, 62(1), 40–46. https://doi.org/10.1080/07448481.2013.843536

Dimitrov, D. M. (2009). Quantitative research in education: Intermediate and advanced methods. Whittier.

Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149

Folkman, S., & Lazarus, R. S. (1985). If it changes it must be a process: Study of emotion and coping during three stages of a college examination. Journal of Personality and Social Psychology, 48(1), 150–170. https://doi.org/10.1037/0022-3514.48.1.150

Folkman, S., & Moskowitz, J. T. (2004). Coping: Pitfalls and promise. Annual Review of Psychology, 55(1), 745–774. https://doi.org/10.1146/annurev.psych.55.090902.141456

Freeman, B., & Coll, K. M. (1997). Factor structure of the Role Questionnaire (RQ): A study of high school counselors. Measurement & Evaluation in Counseling and Development, 30(1), 32–39. https://doi.org/10.1080/07481756.1997.12068915

Fye, H. J., Gnilka, P. B., & McLaulin, S. E. (2018). Perfectionism and school counselors: Differences in stress, coping, and burnout. Journal of Counseling & Development, 96(4), 349–360. https://doi.org/10.1002/jcad.12218

Gnilka, P. B., Karpinski, A. C., & Smith, H. J. (2015). Factor structure of the Counselor Burnout Inventory in a sample of professional school counselors. Measurement and Evaluation in Counseling and Development, 48(3), 177–191. https://doi.org/10.1177%2F0748175615578758

Holman, L. F., Nelson, J., & Watts, R. (2019). Organizational variables contributing to school counselor burnout: An opportunity for leadership, advocacy, collaboration, and systemic change. The Professional Counselor, 9(2), 126–141. https://doi.org/10.15241/lfh.9.2.126

Kim, N., & Lambie, G. W. (2018). Burnout and implications for professional school counselors. The Professional Counselor, 8(3), 277–294. http://doi.org/10.15241/nk.8.3.277

Kolodinsky, P., Draves, P., Schroder, V., Lindsey, C., & Zlatev, M. (2009). Reported levels of satisfaction and frustration by Arizona school counselors: A desire for greater connections with students in a data-driven era. Professional School Counseling, 12(3), 193–199. https://doi.org/10.1177%2F2156759X0901200307

Lazarus, R. S. (1993). Coping theory and research: Past, present, and future. Psychosomatic Medicine, 55(3), 234–247. https://doi.org/10.1097/00006842-199305000-00002

Lazarus, R. S., & Folkman, S. (1984). Stress, appraisal, and coping. Springer.

Lee, S. M., Baker, C. R., Cho, S. H., Heckathorn, D. E., Holland, M. W., Newgent, R. A., Ogle, N. T., Powell, M. L., Quinn, J. J., Wallace, S. L., & Yu, K. (2007). Development and initial psychometrics of the Counselor Burnout Inventory. Measurement and Evaluation in Counseling and Development, 40(3), 142–154. https://doi.org/10.1080/07481756.2007.11909811

Maslach, C., & Leiter, M. P. (2017). Understanding burnout: New models. In C. L. Cooper & J. C. Quick (Eds.), The handbook of stress and health: A guide to research and practice (1st ed., pp. 36–56). Wiley-Blackwell.

McCarthy, C., Van Horn Kerne, V., Calfa, N. A., Lambert, R. G., & Guzmán, M. (2010). An exploration of school counselors’ demands and resources: Relationship to stress, biographic, and caseload characteristics. Professional School Counseling, 13(3), 146–158. https://doi.org/10.1177%2F2156759X1001300302

Moyer, M. (2011). Effects of non-guidance activities, supervision, and student-to-counselor ratios on school counselor burnout. Journal of School Counseling, 9(5), 1–30. http://www.jsc.montana.edu/articles/v9n5.pdf

Mullen, P. R., Blount, A. J., Lambie, G. W., & Chae, N. (2018). School counselors’ perceived stress, burnout, and job satisfaction. Professional School Counseling, 21(1), 1–10. https://doi.org/10.1177/2156759X18782468

Mullen, P. R., & Gutierrez, D. (2016). Burnout, stress and direct student services among school counselors. The Professional Counselor, 6(4), 344–359. http://doi.org/10.15241/pm.6.4.344

Paisley, P. O., & McMahon, H. G. (2001). School counseling for the 21st century: Challenges and opportunities. Professional School Counseling, 5(2), 106–115.

Puig, A., Baggs, A., Mixon, K., Park, Y. M., Kim, B. Y., & Lee, S. M. (2012). Relationship between job burnout and personal wellness in mental health professionals. Journal of Employment Counseling, 49(3), 98–109. https://doi.org/10.1002/j.2161-1920.2012.00010.x

Rizzo, J. R., House, R. J., & Lirtzman, S. I. (1970). Role conflict and ambiguity in complex organizations. Administrative Science Quarterly, 15(2), 150–163. https://doi.org/10.2307/2391486

Scarborough, J. L, & Culbreth, J. R. (2008). Examining discrepancies between actual and preferred practice of school counselors. Journal of Counseling & Development, 86(4), 446–459. https://doi.org/10.1002/j.1556-6678.2008.tb00533.x

Smith, P. C., Kendall, L. M., & Hulin, C. L. (1969). Measurement of satisfaction in work and retirement: A strategy for the study of attitudes. Rand McNally.

Spector, P. E. (1985). Measurement of human service staff satisfaction: Development of the Job Satisfaction Survey. American Journal of Community Psychology, 13(6), 693–713. https://doi.org/10.1007/bf00929796

Spector, P. E. (2011). Job Satisfaction Survey norms. https://shell.cas.usf.edu/~pspector/scales/jssnorms.html

Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Pearson.

Trusty, J., & Brown, D. (2005). Advocacy competencies for professional school counselors. Professional School Counseling, 8(3), 259–265.

Wilkerson, K. (2009). An examination of burnout among school counselors guided by stress-strain-coping theory. Journal of Counseling & Development, 87(4), 428–437. https://doi.org/10.1002/j.1556-6678.2009.tb00127.x

Wilkerson, K., & Bellini, J. (2006). Intrapersonal and organizational factors associated with burnout among school counselors. Journal of Counseling & Development, 84(4), 440–450. https://doi.org/10.1002/j.1556-6678.2006.tb00428.x

 

Heather J. Fye, PhD, NCC, LPC, is an assistant professor at the University of Alabama and a certified PK–12 school counselor. Ryan M. Cook, ACS, LPC, is an assistant professor at the University of Alabama. Eric R. Baltrinic, LPCC-S, is an assistant professor at the University of Alabama. Andrea Baylin, NCC, PEL, is a doctoral student at the University of Alabama. Correspondence may be addressed to Heather Fye, Box 870231, Graves Hall 315B, Tuscaloosa, AL 35487, hjfye@ua.edu.